留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于胶囊内窥镜的宽频圆极化石墨烯天线设计

欧仁侠 尤明慧 房吉博 李俊瑶

欧仁侠, 尤明慧, 房吉博, 李俊瑶. 用于胶囊内窥镜的宽频圆极化石墨烯天线设计[J]. 中国光学, 2021, 14(5): 1169-1176. doi: 10.37188/CO.2021-0005
引用本文: 欧仁侠, 尤明慧, 房吉博, 李俊瑶. 用于胶囊内窥镜的宽频圆极化石墨烯天线设计[J]. 中国光学, 2021, 14(5): 1169-1176. doi: 10.37188/CO.2021-0005
OU Ren-xia, YOU Ming-hui, FANG Ji-bo, LI Jun-yao. Design of a graphene-based wide-band circular polarized antenna for capsule endoscopes[J]. Chinese Optics, 2021, 14(5): 1169-1176. doi: 10.37188/CO.2021-0005
Citation: OU Ren-xia, YOU Ming-hui, FANG Ji-bo, LI Jun-yao. Design of a graphene-based wide-band circular polarized antenna for capsule endoscopes[J]. Chinese Optics, 2021, 14(5): 1169-1176. doi: 10.37188/CO.2021-0005

用于胶囊内窥镜的宽频圆极化石墨烯天线设计

doi: 10.37188/CO.2021-0005
基金项目: 吉林省教育厅项目(No. JKH20191316KJ)
详细信息
    作者简介:

    欧仁侠(1980—),女,吉林吉林人,硕士,讲师,2005年、2008年于长春理工大学分别获得学士、硕士学位,主要从事信号与系统、自动控制、无线生物医疗、微波射频等方面的研究。E-mail:52083926@qq.com

  • 中图分类号: TN82

Design of a graphene-based wide-band circular polarized antenna for capsule endoscopes

Funds: Supported by Project of Education Department of Jilin Province (No. JKH20191316KJ)
More Information
  • 摘要: 为了提高胶囊内窥镜天线的工作性能,提高天线抗干扰能力和兼容性,进一步缩小尺寸,设计了一种基于石墨烯的用于胶囊内窥镜的宽频圆极化天线。该天线由3层辐射单元和地板构成,利用石墨烯薄膜优良的导电性能,制作天线的各层辐射单元和地板以有效增强胶囊天线的工作带宽与增益,提高传输效率并降低损耗。通过4个短路探针使第1层与第2层辐射单元相连接,构成复合螺旋天线,进而产生圆极化特性,既能减少误码率又能抑制多径干扰,并且能够更加高效地耦合电磁能量,有效改善阻抗匹配并调节圆极化纯度。详细分析了第1层、第2层和第3层辐射单元开口圆环尺寸、石墨烯薄膜厚度、天线摄入环境(胃、小肠、结肠等)对天线性能的影响。测试结果表明,设计的体积仅为π×4.52×1.905 mm3,阻抗带宽为2.2~2.78 GHz,轴比带宽为2.26~2.66 GHz,增益为?22.9 dBi,实际测量与仿真结果吻合良好,工作频段内辐射特性稳定,与现有技术相比,本文设计天线外形兼容性强,功能带宽更宽,具有宽频带、圆极化、抗干扰、电磁兼容性好、体积小等特点。该天线适用于ISM 2.4 GHz频段,能满足胶囊内窥镜摄入不同消化器官的工作要求。
  • 图  1  天线结构示意图。(a)三维结构;(b)第1层、(c)第2层、(d)第3层辐射贴片结构参数

    Figure  1.  Schematic diagram of the antenna structure. (a) Three-dimensional structure; structure parameters of (b) the first, (c) the second, and (d) the third radiation patchs

    图  2  单层肌肉组织仿真模型

    Figure  2.  Simulation model of monolayer muscle tissue

    图  3  第1层和第2层辐射单元开口圆环的外径R3、内径R4对天线阻抗带宽和轴比带宽的影响

    Figure  3.  Influence of theinner diameter R4 and outer diameter R3 of open rings in the first and second lagers radiation units on the impedance bandwidth and axial ratio bandwidth

    图  4  第3层辐射单元4个开口圆环内径R9、外径R10对天线阻抗带宽和轴比带宽的影响

    Figure  4.  Influence of the inner diameter R9 and outer diameter R10 of four open rings in the third layer radiation unit on the antenna’s impedance bandwidth and axial ratio bandwidth

    图  5  石墨烯薄膜厚度T对天线阻抗带宽和轴比带宽的影响

    Figure  5.  Effect of graphene coating thickness T on the antenna’s impedance bandwidth and axial ratio bandwidth

    图  6  天线摄入不同消化器官位置示意图

    Figure  6.  Schematic diagram of the locations for antenna intaked in different digestive organs

    图  7  天线摄入人体不同消化环境对阻抗带宽和轴比带宽的影响

    Figure  7.  Influence of different digesting environments on the impedance bandwidth and axial ratio bandwidth

    图  8  天线摄入不同消化器官的辐射特性。(a)胃;(b)小肠;(c)结肠

    Figure  8.  Radiation characteristics of antenna intaked to different digestive organs. (a) Stomach; (b) small intestine; (c) colon

    图  9  实际加工的天线

    Figure  9.  Photo of actual antenna

    图  10  仿真与实测阻抗带宽和轴比带宽曲线

    Figure  10.  Simulated and measured impedance bandwidth and axial ratio bandwidth curves

    表  1  天线的初始结构尺寸

    Table  1.   Initial structural parameters of the proposed antenna

    参数尺寸/mm参数尺寸/mm
    R1 4.5 R9 1.05
    R2 0.8 R10 1.4
    R3 2.25 R11 0.8
    R4 1.9 L1 2.3
    R5 2.08 L2 0.85
    R6 0.3 L3 0.5
    R7 0.3 W1 0.55
    R8 0.2
    下载: 导出CSV

    表  2  与其他典型天线的性能比较

    Table  2.   Performance comparison of proposed antanna and other typical antennas

    文献体积/mm3天线类型阻抗带宽/GHz轴比带宽/GHz增益/dBi
    [8]π×(5.5)2×1.27内嵌2.31~2.512.39~2.68?22.7
    [14]10×15×0.254共形2.08~2.862.05~3.05?29.1
    [16]10×10×1.1内嵌4.78~6.464.82~6.25?33.24
    本文π×(4.5)2×1.905内嵌2.2~2.782.26~2.66?22.9
    下载: 导出CSV
    ag币游app_币游娱乐官网(官网推荐)
  • [1] KAI S, TAKAHASHI M. The film antenna for capsular endoscope[J]. IEICE Communications Express, 2018, 7(7): 242-247. doi: 10.1587/comex.2018XBL0043
    [2] 米智, 陈智辉, 杨毅彪, 等. 电介质球复合纳米天线对荧光定向发射的增强[J]. 中国光学,2020,13(1):121-130. doi: 10.3788/co.20201301.0121

    MI ZH, CHEN ZH H, YANG Y B, et al. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J]. Chinese Optics, 2020, 13(1): 121-130. (in Chinese) doi: 10.3788/co.20201301.0121
    [3] CUI W J, LIU R P, WANG L, et al. Design of wideband implantable antenna for wireless capsule endoscope system[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(12): 2706-2710. doi: 10.1109/LAWP.2019.2949630
    [4] 王晓东, 颜伟, 李兆峰, 等. 平面天线在场效应晶体管太赫兹探测器中的应用[J]. 中国光学,2020,13(1):1-13. doi: 10.3788/co.20201301.0001

    WANG X D, YAN W, LI ZH F, et al. Application of planar antenna in field-effect transistor terahertz detectors[J]. Chinese Optics, 2020, 13(1): 1-13. (in Chinese) doi: 10.3788/co.20201301.0001
    [5] 谷茜茜, 崔占刚, 亓波. 基于离轴自由曲面的激光通信光学天线设计[J]. 中国光学,2020,13(3):547-557.

    GU Q Q, CUI ZH G, QI B. Design of optical antenna for laser communication based on an off-axis freeform surface[J]. Chinese Optics, 2020, 13(3): 547-557. (in Chinese)
    [6] SUCHKOV D, GRANOV A, ANPILOGOV A, et al. Modeling of antenna system for capsule endoscopic complex “Landish”[J]. Procedia Computer Science, 2016, 88: 365-370. doi: 10.1016/j.procs.2016.07.450
    [7] LIU CH R, ZHANG Y D, LIU X G. Circularly polarized implantable antenna for 915 MHz ISM-band far-field wireless power transmission[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 373-376. doi: 10.1109/LAWP.2018.2790418
    [8] LI R Q, GUO Y X, ZHANG B, et al. A miniaturized circularly polarized implantable annular-ring antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2566-2569. doi: 10.1109/LAWP.2017.2734246
    [9] BALABEL A A, MALHAT H A, ZAINUD-DEEN S H. Octafilar helical antenna for wireless in-body capsule endoscopy applications[J]. Journal of Advanced Research in Applied Mechanics, 2018, 44(1): 8-14.
    [10] MA SH B, SYD?NHEIMO L, UKKONEN L, et al. Split-ring resonator antenna system with cortical implant and head-worn parts for effective far-field implant communications[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 710-713. doi: 10.1109/LAWP.2018.2812920
    [11] YANG ZH J, ZHU L, XIAO SH Q. An implantable circularly polarized patch antenna design for pacemaker monitoring based on quality factor analysis[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5180-5192. doi: 10.1109/TAP.2018.2862242
    [12] YANG ZH J, ZHU L, XIAO SH Q. An implantable wideband circularly polarized microstrip patch antenna via two pairs of degenerate modes[J]. IEEE Access, 2019, 7: 4239-4247. doi: 10.1109/ACCESS.2018.2887234
    [13] DAS R, YOO H. A wideband circularly polarized conformal endoscopic antenna system for high-speed data transfer[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 2816-2826. doi: 10.1109/TAP.2017.2694700
    [14] LI ZH X, FAN Y, LIU X Y, et al.. A compact conformal dipole antenna with improved gain for wireless capsule endoscope systems[C]. 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE, 2019: 1-3.
    [15] MIAH S, KHAN A N, ICHELN C, et al. Antenna system design for improved wireless capsule endoscope links at 433 MHz[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2687-2699. doi: 10.1109/TAP.2019.2900389
    [16] ARIFIN F, SAHA P K. Minimization of path loss for a UWB communication link in a wireless capsule endoscopy system using antenna parameters[C]. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), IEEE, 2017: 765-768.
    [17] RAJAGOPALAN H, RAHMAT-SAMII Y. Wireless medical telemetry characterization for ingestible capsule antenna designs[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1679-1682. doi: 10.1109/LAWP.2013.2238502
    [18] JIANG Y N, YUAN R, GAO X, et al. An ultra-wideband pattern reconfigurable antenna based on graphene coating[J]. Chinese Physics B, 2016, 25(11): 118402. doi: 10.1088/1674-1056/25/11/118402
    [19] TANG D L, WANG Q L, WANG ZH, et al. Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna[J]. Science Bulletin, 2018, 63(9): 574-579. doi: 10.1016/j.scib.2018.03.014
    [20] BALANIS C A. Antenna Theory: Analysis and Design[M]. 3rd ed. Hoboken, NJ: John Wiley, 2005: 568.
    [21] SONG R G, WANG Q L, MAO B Y, et al. Flexible graphite films with high conductivity for radio-frequency antennas[J]. Carbon, 2018, 130: 164-169. doi: 10.1016/j.carbon.2018.01.019
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  49
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-02-22
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回