留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油气井下光纤光栅温度压力传感器

薛兆康 国旗 刘善仁 潘学鹏 陈超 于永森

薛兆康, 国旗, 刘善仁, 潘学鹏, 陈超, 于永森. 油气井下光纤光栅温度压力传感器[J]. 中国光学, 2021, 14(5): 1224-1230. doi: 10.37188/CO.2021-0008
引用本文: 薛兆康, 国旗, 刘善仁, 潘学鹏, 陈超, 于永森. 油气井下光纤光栅温度压力传感器[J]. 中国光学, 2021, 14(5): 1224-1230. doi: 10.37188/CO.2021-0008
XUE Zhao-kang, GUO Qi, LIU Shan-ren, PAN Xue-peng, CHEN Chao, YU Yong-sen. Fiber bragg grating temperature and pressure sensor for oil and gas well[J]. Chinese Optics, 2021, 14(5): 1224-1230. doi: 10.37188/CO.2021-0008
Citation: XUE Zhao-kang, GUO Qi, LIU Shan-ren, PAN Xue-peng, CHEN Chao, YU Yong-sen. Fiber bragg grating temperature and pressure sensor for oil and gas well[J]. Chinese Optics, 2021, 14(5): 1224-1230. doi: 10.37188/CO.2021-0008

油气井下光纤光栅温度压力传感器

doi: 10.37188/CO.2021-0008
基金项目: 国家自然科学基金项目(No. 91860140,No. 61874119,No. 61905244);吉林省科技发展规划项目(No. 20180201014GX)
详细信息
    作者简介:

    薛兆康(1994—),男,山东聊城人,硕士研究生,2017年于潍坊学院获得学士学位,现为吉林大学电子科学与工程学院硕士研究生,主要从事光纤传感方面的研究。E-mail:2280825310@qq.com

    于永森(1974—),男,吉林长春人,博士,教授,博士生导师,2005年于吉林大学获得博士学位,主要从事光纤传感,激光微纳加工研究。E-mail: yuys@jlu.edu.cn

  • 中图分类号: TN253

Fiber bragg grating temperature and pressure sensor for oil and gas well

Funds: Supported by National Natural Science Foundation of China (No. 91860140, No. 61874119,No. 61905244); Science and Technology Development Project of Jilin Province (No. 20180201014GX)
More Information
  • 摘要: 温度和压力是石油开采过程中重要的参数,但油气井下高温高压环境苛刻,传统电子传感器很难实现长期稳定的工作。本文提出了一种基于碳纤维管增敏型的光纤光栅温度压力传感器。该传感器是以碳纤维丝编织成的中空管状结构作为骨架,通过耐高温环氧树脂固化成复合碳纤维管作为弹性体,并将表面嵌入耐高温光纤布拉格光栅作为感知元件,实现了井下温度和压力的同时测量。实验结果表明,该传感器可以在0~150 ℃和0~80 MPa环境下稳定工作,压力灵敏度最大可达到?50.02 pm/MPa,同时表现出很好的线性响应。通过外加参考光栅作为温度补偿光栅,解决了温度和压力同时测量过程中的交叉敏感问题,满足了井下开采过程中的精度要求,为油气井下高温高压光纤传感器的设计提供了实验依据。
  • 图  1  (a)光纤温度压力传感器封装示意图和(b)封装后的器件图

    Figure  1.  (a) Schematic diagram of optical fiber temperature and pressure sensor packaging and (b) device diagram after packaging

    图  2  三维四向法编织碳纤维管受压力情况仿真图

    Figure  2.  Pressure simulation diagrams of carbon fiber tube prepared by three-dimensional four-way method

    图  3  光纤温度压力传感器测试装置图

    Figure  3.  Test device diagram of optical fiber temperature and pressure sensor

    图  4  传感器两种光栅的谐振波长与温度拟合曲线

    Figure  4.  Fitting curve of the relationship between resonant wavelengths and temperature for two different gratings in the sensor

    图  5  室温(23 ℃)下传感器的谐振波长与压力拟合曲线

    Figure  5.  Fitting curve for resonant wavelength and pressure at room temperature (23 ℃)

    图  6  不同温度下传感光栅的谐振波长与压力拟合曲线

    Figure  6.  Fitting curve for resonant wavelength and pressure at different temperatures

    图  7  光纤压力传感器稳定性测试

    Figure  7.  Stability test of optical fiber pressure sensor

    表  1  传感光栅在不同温度下的压力响应灵敏度

    Table  1.   Pressure response sensitivity of sensing grating at different temperatures

    Temperature/℃2330405060708090100110120130140150
    Sensitivity/(pm/MPa)?28.18?28.65?29.03?29.55?29.87?30.01?30.36?30.55?30.91?31.89?38.53?43.49?47.56?50.02
    下载: 导出CSV
    ag币游app_币游娱乐官网(官网推荐)
  • [1] QIAO X G, SHAO ZH H, BAO W J, et al. Fiber Bragg grating sensors for the oil industry[J]. Sensors, 2017, 17(3): 429. doi: 10.3390/s17030429
    [2] ERLANDSEN S, VOLD G, MAKIN G D. World’s first multiple fiber-optic intelligent well: intelligent wells[J]. World Oil, 2003, 224(3): 29-32.
    [3] 丁润琪, 侯尚林, 雷景丽, 等. 太赫兹正六边形光子晶体光纤的液体传感[J]. 发光学报,2019,40(2):272-276. doi: 10.3788/fgxb20194002.0272

    DING R Q, HOU SH L, LEI J L, et al. Liquid sensing of hexagonal photonic crystal fibers for terahertz wave[J]. Chinese Journal of Luminescence, 2019, 40(2): 272-276. (in Chinese) doi: 10.3788/fgxb20194002.0272
    [4] GUO Q, YU Y S, ZHENG ZH M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211. doi: 10.1109/TNANO.2018.2888536
    [5] 陈静, 杨曌, 黄宇豪, 等. 基于荧光猝灭效应的光纤传感器研究进展[J]. 发光学报,2020,41(10):1269-1278. doi: 10.37188/CJL.20200206

    CHEN J, YANG ZH, HUANG Y H, et al. Research progress of optical fiber sensors based on fluorescence quenching effect[J]. Chinese Journal of Luminescence, 2020, 41(10): 1269-1278. (in Chinese) doi: 10.37188/CJL.20200206
    [6] 张正义. 基于光纤光栅的一体式靶式流量传感技术[J]. 发光学报,2020,41(2):217-223.

    ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
    [7] 吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 中国光学,2021,14(2):245-263. doi: 10.37188/CO.2020-0121

    WU N SH, XIA L. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. (in Chinese) doi: 10.37188/CO.2020-0121
    [8] 饶春芳, 吴锴, 胡友德, 等. 光纤布拉格光栅在医用蒸汽灭菌器温度监测的应用[J]. 光学 精密工程,2020,28(9):1930-1938. doi: 10.37188/OPE.20202809.1930

    RAO CH F, WU K, HU Y D, et al. Application of fiber Bragg grating in temperature monitoring of medical steam sterilizer[J]. Optics and Precision Engineering, 2020, 28(9): 1930-1938. (in Chinese) doi: 10.37188/OPE.20202809.1930
    [9] ZHOU X L, YU Q X, PENG W. Fiber-optic Fabry-Perot pressure sensor for down-hole application[J]. Optics and Lasers in Engineering, 2019, 121: 289-299. doi: 10.1016/j.optlaseng.2019.04.028
    [10] 刘明尧, 杜常饶, 武育斌. 环氧树脂封装的EFPI-FBG复合压力温度传感器[J]. 光学 精密工程,2019,27(10):2080-2088. doi: 10.3788/OPE.20192710.2080

    LIU M Y, DU CH R, WU Y B. EFPI-FBG composite pressure and temperature sensor embedded in epoxy resin[J]. Optics and Precision Engineering, 2019, 27(10): 2080-2088. (in Chinese) doi: 10.3788/OPE.20192710.2080
    [11] QI X G, WANG SH, JIANG J F, et al. Fiber optic Fabry-perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection[J]. Journal of Lightwave Technology, 2019, 37(11): 2719-2725. doi: 10.1109/JLT.2018.2876717
    [12] PADIDAR S, AHMADI V, EBNALI-HEIDARI M. Design of high sensitive pressure and temperature sensor using photonic crystal fiber for downhole application[J]. IEEE Photonics Journal, 2012, 4(5): 1590-1599. doi: 10.1109/JPHOT.2012.2212242
    [13] SADEGHI J, LATIFI H, SANTOS J L, et al. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application[J]. Applied Physics Letters, 2014, 104(7): 071910. doi: 10.1063/1.4866334
    [14] FU H Y, WU CH, TSE M L V, et al. High pressure sensor based on photonic crystal fiber for downhole application[J]. Applied Optics, 2010, 49(14): 2639-2643. doi: 10.1364/AO.49.002639
    [15] ZHAO Y, LIAO Y B, LAI SH R. Simultaneous measurement of down-hole high pressure and temperature with a bulk-modulus and FBG sensor[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1584-1586. doi: 10.1109/LPT.2002.803914
    [16] RONG Q ZH, QIAO X G. FBG for oil and gas exploration[J]. Journal of Lightwave Technology, 2019, 37(11): 2502-2515. doi: 10.1109/JLT.2018.2866326
    [17] 王宏亮, 宋娟, 冯德全, 等. 应用于特殊环境的光纤光栅温度压力传感器[J]. 光学 精密工程,2011,19(3):545-551. doi: 10.3788/OPE.20111903.0545

    WANG H L, SONG J, FENG D Q, et al. High temperature-pressure FBG sensor applied to special environments[J]. Optics and Precision Engineering, 2011, 19(3): 545-551. (in Chinese) doi: 10.3788/OPE.20111903.0545
    [18] MACHAVARAM V R, BADCOCK R A, FERNANDO G F. Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching[J]. Sensors and Actuators A:Physical, 2007, 138(1): 248-260. doi: 10.1016/j.sna.2007.04.007
    [19] ZHANG Y N, YUAN L, LAN X W, et al. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser: erratum[J]. Optics Letters, 2014, 39(1): 17. doi: 10.1364/OL.39.000017
    [20] ZHOU P, LIAO C R, LI ZH Y, et al. In-fiber cascaded FPI fabricated by chemical-assisted femtosecond laser micromachining for micro-fluidic sensing applications[J]. Journal of Lightwave Technology, 2019, 37(13): 3214-3221. doi: 10.1109/JLT.2019.2912835
    [21] WANG Z, LIU H, MA Z, et al. High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer[J]. Optics Express, 2019, 27(20): 27691-27701. doi: 10.1364/OE.27.027691
    [22] LI W CH, YUAN Y G, YANG J, et al. In-fiber integrated high sensitivity temperature sensor based on long Fabry-Perot resonator[J]. Optics Express, 2019, 27(10): 14675-14683. doi: 10.1364/OE.27.014675
    [23] ZHANG ZH, HE J, DU B, et al. Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers[J]. Optics Letters, 2018, 43(24): 6009-6012. doi: 10.1364/OL.43.006009
    [24] LIU Y G, WANG Y X, YANG D Q, et al. Hollow-core fiber-based all-fiber fpi sensor for simultaneous measurement of air pressure and temperature[J]. IEEE Sensors Journal, 2019, 19(23): 11236-11241. doi: 10.1109/JSEN.2019.2934738
    [25] 吴晶, 吴晗平, 黄俊斌, 等. 光纤光栅传感信号解调技术研究进展[J]. 中国光学,2014,7(4):519-531.

    WU J, WU H P, HUANG J B, et al. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 2014, 7(4): 519-531. (in Chinese)
    [26] ZHOU C M, PANG Y D, QIAN L, et al. Demodulation of a hydroacoustic sensor array of fiber interferometers based on ultra-weak fiber Bragg grating reflectors using a self-referencing signal[J]. Journal of Lightwave Technology, 2019, 37(11): 2568-2576. doi: 10.1109/JLT.2018.2884512
    [27] XU M G, REEKIE L, CHOW Y T, et al. Optical in-fibre grating high pressure sensor[J]. Electronics Letters, 1993, 29(4): 398-399. doi: 10.1049/el:19930267
    [28] 孙安, 乔学光, 贾振安, 等. 耐高压光纤Bragg光栅压力传感技术研究[J]. 光子学报,2004,33(7):823-825.

    SUN A, QIAO X G, JIA ZH A, et al. The study of fiber Bragg grating pressure sensor with high pressure-resistance[J]. Acta Photonica Sinica, 2004, 33(7): 823-825. (in Chinese)
    [29] 申人升, 于永森, 张金, 等. 薄壁应变筒式光纤光栅压力传感器的研究[J]. 光电子·激光,2008,19(11):1433-1436. doi: 10.3321/j.issn:1005-0086.2008.11.002

    SHEN R SH, YU Y S, ZHANG J, et al. Investigation of FBG pressure sensor based on thin wall strain tube[J]. Journal of Optoelectronics·Laser, 2008, 19(11): 1433-1436. (in Chinese) doi: 10.3321/j.issn:1005-0086.2008.11.002
    [30] FENG P F, SONG G J, LI X R, et al. Effects of different "rigid-flexible" structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Colloid and Interface Science, 2021, 583: 13-23. doi: 10.1016/j.jcis.2020.09.005
    [31] GUO F L, HUANG P, LI Y Q, et al. Multiscale modeling of mechanical behaviors of carbon fiber reinforced epoxy composites subjected to hygrothermal aging[J]. Composite Structures, 2021, 256: 113098. doi: 10.1016/j.compstruct.2020.113098
    [32] 李科杰. 新编传感器技术手册[M]. 北京: 国防工业出版社, 2002.

    LI K J. New Sensor Technical Manual[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
    [33] GARCIA I, ZUBIA J, DURANA G, et al. Optical fiber sensors for aircraft structural health monitoring[J]. Sensors, 2015, 15(7): 15494-15519. doi: 10.3390/s150715494
    [34] XIONG L, JIANG G ZH, GUO Y X, et al. Investigation of the temperature compensation of FBGs encapsulated with different methods and subjected to different temperature change rates[J]. Journal of Lightwave Technology, 2019, 37(3): 917-926. doi: 10.1109/JLT.2018.2883817
    [35] 吕京生, 郭士生, 王昌, 等. 一种新型光纤油井井下压力传感器[J]. 山东科学,2011,24(2):47-50.

    Lü J SH, GUO SH SH, WANG CH, et al. A new optical fiber pressure sensor for oil well application[J]. Shandong Science, 2011, 24(2): 47-50. (in Chinese)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  68
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-02-22
  • 网络出版日期:  2021-05-15
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回