留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增强现实显示技术综述

史晓刚 薛正辉 李会会 王丙杰 李双龙

史晓刚, 薛正辉, 李会会, 王丙杰, 李双龙. 增强现实显示技术综述[J]. 中国光学, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032
引用本文: 史晓刚, 薛正辉, 李会会, 王丙杰, 李双龙. 增强现实显示技术综述[J]. 中国光学, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032
SHI Xiao-gang, XUE Zheng-hui, LI Hui-hui, WANG Bing-jie, LI Shuang-long. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032
Citation: SHI Xiao-gang, XUE Zheng-hui, LI Hui-hui, WANG Bing-jie, LI Shuang-long. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032

增强现实显示技术综述

doi: 10.37188/CO.2021-0032
基金项目: 北京市科学技术委员会资助(No. Z191100004819005)
详细信息
    作者简介:

    史晓刚(1990—),男,北京人,北京理工大学博士研究生,2013年于北京理工大学获得学士学位,主要从事增强现实显示技术方面的研究。E-mail:shixiaogang@xloong.com

    薛正辉(1970—),男,上海人,北京理工大学教授、博士生导师,1992年、1995年、2002年于北京理工大学分别获得学士、硕士、博士学位,主要从事电子科学与技术的研究。E-mail:zhxue@bit.edu.cn

  • 中图分类号: TN27;TB133

Review of augmented reality display technology

Funds: Supported by Beijing Municipal Science & Technology Commission(No. Z191100004819005)
More Information
  • 摘要: 增强现实显示技术近年来发展迅速,已成为全球信息技术及产业的研究热点和发展重点,有望彻底改变人们感知和处理各种数字信息的方式。同时,微显示技术和光学技术的最新进展为增强现实显示技术的进一步发展指明了方向。本文分析了人眼视觉系统对增强现实头戴式显示器的光学性能要求,将目前增强现实头戴式显示器可实现的规格与之进行比较,说明了现阶段增强现实显示技术的发展水平和面临的主要挑战;重点阐述了增强现实显示技术中各种微显示器和光学组合器的基本原理和所能达到的参数指标,说明了它们的技术先进性和可实现性,同时对它们的发展前景进行了展望。
  • 图  1  (a)人眼视场角分布[5];(b)人眼观察真实景象时,会聚距离与调焦距离一致;(c)人眼观察显示屏上的虚拟物体时,会聚距离与调焦距离不一致

    Figure  1.  (a) The profile of human FOV[5]; (b) accommodation cue coincides with vergence cue when viewing a real object; (c) accommodation cue mismatches with vergence cue when viewing a virtual object displayed at a fixed plane

    图  2  LCoS结构示意图[25]

    Figure  2.  Schematic diagram of LCoS structure[25]

    图  3  基于LCoS结构的一种AR头戴式显示器的光学系统示意图[25]

    Figure  3.  Schematic diagram of an LCoS based AR head-mounted display optical system[25]

    图  4  DLP结构示意图

    Figure  4.  Schematic diagram of DLP structure

    图  5  微型OLED结构示意图

    Figure  5.  Schematic diagram of micro-OLED structure

    图  6  μLED结构示意图

    Figure  6.  Schematic diagram of μLED structure

    图  7  视网膜扫描显示系统示意图

    Figure  7.  Schematic diagram of retinal scanning display

    图  8  Birdbath结构示意图

    Figure  8.  Structure diagram of Birdbath optical combiner

    图  9  自由曲面反射镜结构示意图

    Figure  9.  Structure diagram of freeform mirror optical combiner

    图  10  自由曲面棱镜结构示意图

    Figure  10.  Structure diagram of freeform prism optical combiner

    图  11  阵列波导结构示意图

    Figure  11.  Structure diagram of cascaded mirrors optical combiner

    图  12  各种表面浮雕光栅结构示意图[53]。(a)矩形光栅;(b)倾斜光栅;(c)闪耀光栅和(d)模拟光栅

    Figure  12.  Structure diagram of various SRGs[53]. (a) Rectangular grating; (b) slanted grating; (c) blazed grating and (d) analog grating

    图  13  光栅波导结构示意图

    Figure  13.  Structure diagram of grating waveguide optical combiner

    图  14  HoloLens V1光学组合器示意图[53]

    Figure  14.  Structure diagram of HoloLens V1 optical combiner[53]

    图  15  Magic Leap One光学组合器示意图[53]

    Figure  15.  Structure diagram of Magic Leap One optical combiner[53]

    图  16  光栅条纹结构示意图

    Figure  16.  Schematic diagram of grating stripe structure

    图  17  全息光学元件波导组合器示意图[4]

    Figure  17.  Schematic diagram of holographic optical element waveguide combiner[4]

    图  18  离轴全息光学元件组合器示意图[4]

    Figure  18.  Schematic diagram of off-axis holographic optical element combiner[4]

    图  19  体全息光栅波导组合器示意图

    Figure  19.  Schematic diagram of volume holographic grating waveguide combiner

    图  20  偏振体光栅结构示意图[67]

    Figure  20.  Structure diagram of polarization volume grating[67]

    表  1  几种AR微显示器之间的性能对比

    Table  1.   Performance comparison of different types of AR micro-displays

    LCoSDLPOLEDμLEDMEMS RSD
    成熟度中等中等
    亮度(nits)${10^4}$~${10^5}$${10^4}$~${10^5}$${10^3}$~${10^4}$${10^5}$~${10^6}$$ > {10^4}$
    对比度~${10^3}:1$~${10^3}:1$~${10^4}:1$~${10^5}:1$~${10^5}:1$
    光效中等
    体积中等
    光学系统复杂度中等中等
    下载: 导出CSV

    表  2  AR光学组合器的性能对比

    Table  2.   Performance comparison of AR optical combiners

    效率体积带宽视场角色彩均匀性批量生产工艺
    Birdbath$ < 25\% $~$52^\circ $良好注塑/涂层
    自由曲面反射镜$ < 50\% $~$90^\circ $良好注塑/涂层
    自由曲面棱镜$ < 50\% $~$120^\circ $良好注塑/涂层
    阵列波导$ < 20\% $中等~$40^\circ $良好切割/涂层/抛光
    SRG$ < 10\% $中等~$52^\circ $需要补偿纳米压印
    离轴全息透镜$ < 20\% $~$15^\circ $需要补偿曝光
    传统体全息光栅$ < 10\% $中等~$40^\circ $需要补偿曝光
    HPDLC$ < 10\% $中等中等~$50^\circ $曝光
    PVG$ < 10\% $中等中等~$50^\circ $曝光
    下载: 导出CSV
    ag币游app_币游娱乐官网(官网推荐)
  • [1] CARMIGNIANI J, FURHT B, ANISETTI M, et al. Augmented reality technologies, systems and applications[J]. Multimedia Tools and Applications, 2011, 51(1): 341-377. doi: 10.1007/s11042-010-0660-6
    [2] 何泽浩, 隋晓萌, 赵燕, 等. 基于全息光学的虚拟现实与增强现实技术进展[J]. 科技导报,2018,36(9):8-17.

    HE Z H, SUI X M, ZHAO Y, et al. The development trend of virtual reality and augmented reality technology based on holographic optics[J]. Science &Technology Review, 2018, 36(9): 8-17. (in Chinese)
    [3] 范丽亚, 马介渊, 张克发, 等. 增强现实硬件产业的发展及展望[J]. 科技导报,2019,37(15):114-124.

    FAN L Y, MA J Y, ZHANG K F, et al. The development status and prospect of augmented reality hardware industry[J]. Science &Technology Review, 2019, 37(15): 114-124. (in Chinese)
    [4] CHANG CH L, BANG K, WETZSTEIN G, et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective[J]. Optica, 2020, 7(11): 1563-1578. doi: 10.1364/OPTICA.406004
    [5] WHEELWRIGHT B, SULAI Y, GENG Y, et al. Field of view: not just a number[J]. Proceedings of SPIE, 2018, 10676: 1067604.
    [6] ZHAN T, YIN K, XIONG J H, et al. Augmented reality and virtual reality displays: perspectives and challenges[J]. iScience, 2020, 23(8): 101397. doi: 10.1016/j.isci.2020.101397
    [7] CURCIO C A, SLOAN K R, KALINA R E, et al. Human photoreceptor topography[J]. Journal of Comparative Neurology, 1990, 292(4): 497-523. doi: 10.1002/cne.902920402
    [8] DOBROWOLSKI J A, SULLIVAN B T, BAJCAR R C. Optical interference, contrast-enhanced electroluminescent device[J]. Applied Optics, 1992, 31(28): 5988-5996. doi: 10.1364/AO.31.005988
    [9] CHEN H W, TAN G J, WU S T. Ambient contrast ratio of LCDs and OLED displays[J]. Optics Express, 2017, 25(26): 33643-33656. doi: 10.1364/OE.25.033643
    [10] LEE Y H, ZHAN T, WU S T. Prospects and challenges in augmented reality displays[J]. Virtual Reality &Intelligent Hardware, 2019, 1(1): 10-20.
    [11] SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 2018052277A1[P]. 2018-02-22.
    [12] HOFFMAN D M, GIRSHICK A R, AKELEY K, et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J]. Journal of Vision, 2008, 8(3): 33. doi: 10.1167/8.3.33
    [13] KRAMIDA G. Resolving the vergence-accommodation conflict in head-mounted displays[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(7): 1912-1931. doi: 10.1109/TVCG.2015.2473855
    [14] ZHAN T, XIONG J H, ZOU J Y, et al. Multifocal displays: review and prospect[J]. PhotoniX, 2020, 1: 10. doi: 10.1186/s43074-020-00010-0
    [15] TAY S, BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698. doi: 10.1038/nature06596
    [16] YARA? F, KANG H, ONURAL L. State of the art in holographic displays: a survey[J]. Journal of Display Technology, 2010, 6(10): 443-454. doi: 10.1109/JDT.2010.2045734
    [17] WETZSTEIN G, LANMAN D, HIRSCH M, et al. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting[J]. ACM Transactions on Graphics, 2012, 31(4): 80.
    [18] YUUKI A, ITOGA K, SATAKE T. A new Maxwellian view display for trouble-free accommodation[J]. Journal of the Society for Information Display, 2012, 20(10): 581-588. doi: 10.1002/jsid.122
    [19] STEVENS R E, RHODES D P, HASNAIN A, et al. Varifocal technologies providing prescription and VAC mitigation in HMDs using Alvarez lenses[J]. Proceedings of SPIE, 2018, 10676: 106760J.
    [20] DUNN D, TIPPETS C, TORELL K, et al. Wide field of view varifocal near-eye display using see-through deformable membrane mirrors[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1322-1331. doi: 10.1109/TVCG.2017.2657058
    [21] 刘澍鑫, 李燕, 苏翼凯. 基于液晶散射膜的多平面增强现实显示[J]. 液晶与显示,2020,35(7):725-732.

    LIU SH X, LI Y, SU Y K. Review on multi-plane augmented reality display based on liquid crystal scattering films[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 725-732. (in Chinese)
    [22] LIU SH, HUA H. A systematic method for designing depth-fused multi-focal plane three-dimensional displays[J]. Optics Express, 2010, 18(11): 11562-11573. doi: 10.1364/OE.18.011562
    [23] ZHAN T, LEE Y H, WU S T. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses[J]. Optics Express, 2018, 26(4): 4863-4872. doi: 10.1364/OE.26.004863
    [24] LIU SH X, LI Y, ZHOU P CH, et al. Full-color multi-plane optical see-through head‐mounted display for augmented reality applications[J]. Journal of the Society for Information Display, 2018, 26(12): 687-693. doi: 10.1002/jsid.739
    [25] HUANG Y G, LIAO E, CHEN R, et al. Liquid-crystal-on-silicon for augmented reality displays[J]. Applied Sciences, 2018, 8(12): 2366. doi: 10.3390/app8122366
    [26] KIM J, KOMANDURI R K, LAWLER K F, et al. Efficient and monolithic polarization conversion system based on a polarization grating[J]. Applied Optics, 2012, 51(20): 4852-4857. doi: 10.1364/AO.51.004852
    [27] DU T, FAN F, TAM A M W, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer[J]. Advanced Materials, 2015, 27(44): 7191-7195. doi: 10.1002/adma.201502395
    [28] WANG CH, HSU R. 18‐4: Invited Paper: Digital modulation on micro display and spatial light modulator[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 238-241. doi: 10.1002/sdtp.11678
    [29] KANAZAWA M, HAMADA K, KONDOH I, et al. An ultrahigh-definition display using the pixel-offset method[J]. Journal of the Society for Information Display, 2004, 12(1): 93-103. doi: 10.1889/1.1824245
    [30] STERLING R. JVC D-ILA high resolution, high contrast projectors and applications[C]. Proceedings of the 2008 Workshop on Immersive Projection Technologies/Emerging Display Technologiges, ACM, 2008: 1-6.
    [31] HUANG Y P, LIN F CH, SHIEH H P D. Eco-displays: the color LCD's without color filters and polarizers[J]. Journal of Display Technology, 2011, 7(12): 630-632. doi: 10.1109/JDT.2011.2166056
    [32] LEE Y H, ZHAN T, WU S T. Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase detector[J]. Optics Letters, 2017, 42(22): 4732-4735.
    [33] PETTITT G, FERRI J, THOMPSON J. 47.1: invited paper: practical application of TI DLP? technology in the next generation head-up display system[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 700-703. doi: 10.1002/sdtp.10269
    [34] FIRTH M. Turning automotive windows into the Ultimate HMIs[J]. Information Display, 2020, 36(4): 16-20. doi: 10.1002/msid.1129
    [35] MOTOYAMA Y, SUGIYAMA K, TANAKA H, et al. High‐efficiency OLED microdisplay with microlens array[J]. Journal of the Society for Information Display, 2019, 27(6): 354-360. doi: 10.1002/jsid.784
    [36] GHOSH A, DONOGHUE E P, KHAYRULLIN I, et al. 18-1: invited paper: ultra-high-brightness 2K x 2K Full-color OLED microdisplay using direct patterning of OLED emitters[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 226-229. doi: 10.1002/sdtp.11674
    [37] LIN J Y, JIANG H X. Development of microLED[J]. Applied Physics Letters, 2020, 116(10): 100502. doi: 10.1063/1.5145201
    [38] HUANG Y, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives[J]. Light:Science &Applications, 2020, 9(1): 105.
    [39] 韩洪松, 齐爱想, 刘俊国, 等. Micro-LED在机载上的应用[J]. 液晶与显示,2021,36(3):439-447. doi: 10.37188/CJLCD.2020-0096

    HAN H S, QI A X, LIU J G, et al. Application of Micro-LED technology in airborne display[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 439-447. (in Chinese) doi: 10.37188/CJLCD.2020-0096
    [40] QUESNEL E, LAGRANGE A, VIGIER M, et al. Dimensioning a full color LED microdisplay for augmented reality headset in a very bright environment[J]. Journal of the Society for Information Display, 2021, 29(1): 3-16. doi: 10.1002/jsid.884
    [41] 郝斌, 赵文武, 郁建元, 等. 荧光粉Ba5-3x/2B4O11:xEu3+的制备及发光性能[J]. 应用化学,2019,36(5):548-553. doi: 10.11944/j.issn.1000-0518.2019.05.180276

    HAO B, ZHAO W W, YU J Y, et al. Preparation and luminescence property of Ba5-3x/2B4O11xEu3+ phosphor[J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 548-553. (in Chinese) doi: 10.11944/j.issn.1000-0518.2019.05.180276
    [42] 刘伟强, 崔荣朕, 武瑞霞, 等. 蓝色延迟荧光材料及器件的研究进展[J]. 应用化学,2019,36(1):1-9. doi: 10.11944/j.issn.1000-0518.2019.01.180071

    LIU W Q, CUI R ZH, WU R X, et al. Recent progress on blue delayed fluorescent materials and devices[J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 1-9. (in Chinese) doi: 10.11944/j.issn.1000-0518.2019.01.180071
    [43] 黄国斌, 骆登峰, 张茂升. 多色高发光效率CsPbX3(X=Cl, Br, I)钙钛矿量子点的制备及其在发光二极管中的应用[J]. 应用化学,2019,36(8):932-938. doi: 10.11944/j.issn.1000-0518.2019.08.190016

    HUANG G B, LUO D F, ZHANG M SH. Preparation of CsPbX3(X=Cl, Br, I) perovskite quantum dots with multicolor and high luminescence efficiency and its application in light emitting diode devices[J]. Chinese Journal of Applied Chemistry, 2019, 36(8): 932-938. (in Chinese) doi: 10.11944/j.issn.1000-0518.2019.08.190016
    [44] ALEXANDER S, BAILEY M, MORRISON V R, et al.. Systems, devices, and methods for eyebox expansion in wearable heads-up displays: US, 9989764[P]. 2018-06-05.
    [45] HAAS G. 40-2: invited paper: microdisplays for augmented and virtual reality[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 506-509. doi: 10.1002/sdtp.12445
    [46] CADO H, MOLITON R. Polarization splitter, method of manufacturing same and ophthalmic lens incorporating projection inserts containing it: US, 20040136082[P]. 2004-07-15.
    [47] MARTINEZ M A, SAEEDI E, AMIRPARVIZ B. Head-mounted display including integrated projector: US, 9128285[P]. 2015-09-08.
    [48] WANG J H, LIANG Y CH, XU M. Design of a see-through head-mounted display with a freeform surface[J]. Journal of the Optical Society of Korea, 2015, 19(6): 614-618. doi: 10.3807/JOSK.2015.19.6.614
    [49] TAKAHASHI K. Head or face mounted image display apparatus: US, 5701202[P]. 1997-12-23.
    [50] AMITAI Y. Substrate-guided optical device utilizing thin transparent layer: US, 7724443[P]. 2010-05-25.
    [51] CHENG D W, WANG Y T, XU CH, et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J]. Optics Express, 2014, 22(17): 20705-20719. doi: 10.1364/OE.22.020705
    [52] GU L, CHENG D W, WANG Q W, et al. Design of a two-dimensional stray-light-free geometrical waveguide head-up display[J]. Applied Optics, 2018, 57(31): 9246-9256. doi: 10.1364/AO.57.009246
    [53] KRESS B C. Optical waveguide combiners for AR headsets: features and limitations[J]. Proceedings of SPIE, 2019, 11062: 110620J.
    [54] 刘明欢, 付秀华, 王菲, 等. 增强现实显示衍射光波导的设计[J]. 液晶与显示,2021,36(3):389-397. doi: 10.37188/CJLCD.2020-0214

    LIU M H, FU X H, WANG F, et al. Design of augmented reality display diffraction optical waveguide[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 389-397. (in Chinese) doi: 10.37188/CJLCD.2020-0214
    [55] MUKAWA H, AKUTSU K, MATSUMURA I, et al. A full-color eyewear display using planar waveguides with reflection volume holograms[J]. Journal of the Society for Information Display, 2009, 17(3): 185-193. doi: 10.1889/JSID17.3.185
    [56] KRESS B C, CUMMINGS W J. 11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 127-131. doi: 10.1002/sdtp.11586
    [57] SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 20200284967[P]. 2020-09-10.
    [58] GLEESON M R, SHERIDAN J T. A review of the modelling of free-radical photopolymerization in the formation of holographic gratings[J]. Journal of Optics A:Pure and Applied Optics, 2009, 11(2): 024008. doi: 10.1088/1464-4258/11/2/024008
    [59] BRUDER F K, F?CKE T, HAGEN R, et al. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol? HX photopolymer film[J]. Proceedings of SPIE, 2015, 9626: 96260T.
    [60] YEOM H J, KIM H J, KIM S B, et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation[J]. Optics Express, 2015, 23(25): 32025-32034. doi: 10.1364/OE.23.032025
    [61] LIN W K, MATOBA O, LIN B S, et al. Astigmatism correction and quality optimization of computer-generated holograms for holographic waveguide displays[J]. Optics Express, 2020, 28(4): 5519-5527. doi: 10.1364/OE.381193
    [62] MAIMONE A, GEORGIOU A, KOLLIN J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 2017, 36(4): 85.
    [63] SUTHERLAND R L, TONDIGLIA V P, NATARAJAN L V, et al. Electrically switchable volume gratings in polymer‐dispersed liquid crystals[J]. Applied Physics Letters, 1994, 64(9): 1074-1076. doi: 10.1063/1.110936
    [64] FENG X Y, LU L, YAROSHCHUK O, et al. Closer look at transmissive polarization volume holograms: geometry, physics, and experimental validation[J]. Applied Optics, 2021, 60(3): 580-592. doi: 10.1364/AO.412589
    [65] NYS I. Patterned surface alignment to create complex three-dimensional nematic and chiral nematic liquid crystal structures[J]. Liquid Crystals Today, 2020, 29(4): 65-83. doi: 10.1080/1358314X.2020.1886780
    [66] WENG Y SH, XU D M, ZHANG Y N, et al. Polarization volume grating with high efficiency and large diffraction angle[J]. Optics Express, 2016, 24(16): 17746-17759. doi: 10.1364/OE.24.017746
    [67] LEE Y H, YIN K, WU S T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays[J]. Optics Express, 2017, 25(22): 27008-27014. doi: 10.1364/OE.25.027008
    [68] LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities[J]. Optical Data Processing and Storage, 2017, 3(1): 79-88.
    [69] SAKHNO O, GRITSAI Y, SAHM H, et al. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer[J]. Applied Physics B, 2018, 124(3): 52. doi: 10.1007/s00340-018-6920-2
    [70] LEE Y H, TAN G J, YIN K, et al. Compact see-through near-eye display with depth adaption[J]. Journal of the Society for Information Display, 2018, 26(2): 64-70. doi: 10.1002/jsid.635
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  152
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-03-30
  • 网络出版日期:  2021-05-15
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回