留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间激光干涉仪激光抖动噪声抑制研究

王璐钰 李玉琼 蔡榕

王璐钰, 李玉琼, 蔡榕. 空间激光干涉仪激光抖动噪声抑制研究[J]. 中国光学. doi: 10.37188/CO.2021-0045
引用本文: 王璐钰, 李玉琼, 蔡榕. 空间激光干涉仪激光抖动噪声抑制研究[J]. 中国光学. doi: 10.37188/CO.2021-0045
WANG Lu-yu, LI Yu-qiong, CAI Rong. Research on noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics. doi: 10.37188/CO.2021-0045
Citation: WANG Lu-yu, LI Yu-qiong, CAI Rong. Research on noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics. doi: 10.37188/CO.2021-0045

空间激光干涉仪激光抖动噪声抑制研究

doi: 10.37188/CO.2021-0045
基金项目: 中国科学院青年创新促进会(No. 2018024);国家自然科学基金(No. 61575209);中国科学院战略重点研究计划(No. XDA17020103)
详细信息
    作者简介:

    王璐钰(1995—),女,陕西渭南人,硕士,2018年于西安工业大学获得学士学位,现于中国科学院空天信息创新研究院攻读硕士学位,主要从事面向空间引力波探测中影响激光干涉仪测量精度的光程倾斜耦合噪声和激光抖动噪声抑制研究。E-mail:wangluyu18@mails.ucas.ac

    李玉琼(1982—),男,湖南娄底人,博士,副研究员、中国科学院青年创新促进委员会会员,2005年于陕西科技大学获得学士学位,2010年于北京理工大学获得博士学位,主要从事面向空间引力波探测的激光干涉测量研究。E-mail:liyuqiong@imech.ac.cn

    蔡 榕(1964—),男,福建泉州人,研究员、博士研究生导师、中国科学院空天信息创新研究院党委书记,1986年于清华大学获得学士学位,1989年获同济大学热能工程系硕士学位,主要从事激光传输与临近空间环境探测研究。E-mail:cairong@aircas.ac.cn

  • 中图分类号: TN249

Research on noise suppression of laser jitter in space laser interferometer

Funds: Supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018024), and the National Science Foundation of China (No. 61575209), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA17020103)
More Information
  • 摘要:   目的  在“太极计划”中,由卫星抖动引起的激光抖动噪声是影响激光干涉测量精度的主要噪声源之一,为保证测量精度,需抑制该噪声至10 nrad/√Hz@10 mHz。  方法  首先,采用由四象限光电探测器和相位计组成的角度敏感器进行角度信号测量,并利用马赫-曾德干涉仪结合比例-积分-微分控制技术,搭建了地基激光抖动噪声抑制系统。其次,分析了系统反馈控制能力以及系统对于抑制激光抖动噪声的有效性。  结果  实验结果表明:该系统可有效抑制激光抖动噪声,使得激光抖动噪声<4 nrad/√Hz@10 mHz。  结论  实验推进了“太极计划”对激光抖动噪声抑制水平的研究,为激光干涉测量奠定了物理实验基础。
  • 图  1  差分波前敏感测角技术原理图

    Figure  1.  Schematic diagram of differential wavefront sensitive angle measurement technology

    图  2  激光抖动噪声抑制系统(a)激光调制光路(b)干涉光路(c)总体光路

    Figure  2.  Laser jitter noise suppression system (a) Laser modulation optical path (b) Interference optical path (c) Overall optical path

    (RM: right-angle mirror, PBS: polarization beam splitter(5:5), AOM: acousto-optic modulator, WP: wedge piece, NDF: neutral density filter, LP: linear polarizer, FC: fiber coupler, PI: quick tilt mirror of Physik Instrumente, QPD: quadrant photodetector, DP: digital phasemeter, PID: proportional-integral-derivative controller, PC: personal computer)

    图  3  串扰测试(a)水平方向对垂直方向的串扰(b)垂直方向对水平方向的串扰

    Figure  3.  Crosstalk test (a) Crosstalk of horizontal to vertical direction (b) Crosstalk of vertical to horizontal direction

    图  4  相位转化因子(a)垂直方向(b)水平方向

    Figure  4.  Phase conversion factor (a) Vertical direction (b) Horizontal direction

    图  5  系统读出噪声时域图(a)垂直方向(b)水平方向

    Figure  5.  Time domain diagram of system readout noise (a) Vertical direction (b) Horizontal direction

    图  6  系统读出噪声频域图(a)垂直方向(b)水平方向

    Figure  6.  Frequency domain diagram of system readout noise (a) Vertical direction (b) Horizontal direction

    图  7  激光抖动噪声抑制结果(分别加抖动)(a)垂直方向(b)水平方向

    Figure  7.  Laser jitter noise suppression result(Jitter separately)(a) Vertical direction (b) Horizontal direction

    图  8  激光抖动噪声抑制结果(同时加抖动)(a)垂直方向(b)水平方向

    Figure  8.  Laser jitter noise suppression result(Simultaneous jitter)(a) Vertical direction (b)Horizontal direction

    ag币游app_币游娱乐官网(官网推荐)
  • [1] PITKIN M, REID S, ROWAN S, et al. Gravitational Wave Detection by Interferometry (Ground and Space)[J]. Living Reviews in Relativity, 2011, 14: 5. doi: 10.12942/lrr-2011-5
    [2] HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi: 10.1093/nsr/nwx116
    [3] 罗子人, 张敏, 靳刚. 激光干涉引力波空间阵列核心问题的综合讨论[J]. 科学通报,2019,64(24):2468-2474. doi: 10.1360/TB-2019-0055

    LUO Z R, ZHANG M, JIN G. Overall discussion on the key problems of a space-borne laser interferometer gravitational wave antenna[J]. Chinese Science Bulletin, 2019, 64(24): 2468-2474. (in Chinese) doi: 10.1360/TB-2019-0055
    [4] LI Y Q, LUO Z R, LIU H SH, et al. Laser interferometer for space gravitational waves detection and earth gravity mapping[J]. Microgravity Science and Technology, 2018, 30(6): 817-829. doi: 10.1007/s12217-018-9624-7
    [5] 刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学,2019,12(3):486-492. doi: 10.3788/co.20191203.0486

    LIU H SH, GAO R H, LUO Z R, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492. (in Chinese) doi: 10.3788/co.20191203.0486
    [6] 董玉辉. 面向空间激光干涉引力波探测的精密指向和弱光锁相控制技术的研究[D]. 北京: 中国科学院大学, 2015.

    DONG Y H. Inter-satellite interferometry: fine pointing and weak-light phase-locking techniques for space gravitational wave observatory[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
    [7] 高瑞弘, 刘河山, 罗子人, 等. 太极计划激光指向调控方案介绍[J]. 中国光学,2019,12(3):425-431. doi: 10.3788/co.20191203.0425

    GAO R H, LIU H SH, LOU Z R, et al. Introduction of laser pointing scheme in the Taiji program[J]. Chinese Optics, 2019, 12(3): 425-431. (in Chinese) doi: 10.3788/co.20191203.0425
    [8] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学,2016,9(1):16-29. doi: 10.3788/co.20160901.0016

    LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1): 16-29. (in Chinese) doi: 10.3788/co.20160901.0016
    [9] LUO Z R, WANG Q L, MAHRDT C, et al. Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission[J]. Applied Optics, 2017, 56(5): 1495-1500. doi: 10.1364/AO.56.001495
    [10] WUCHENICH D M R, MAHRDT C, SHEARD B S, et al. Laser link acquisition demonstration for the GRACE Follow-on mission[J]. Optics Express, 2014, 22(9): 11351-11366. doi: 10.1364/OE.22.011351
    [11] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报,2020,7(1):3-10.

    LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10. (in Chinese)
    [12] JIN G. Program in space detection of gravitational wave in Chinese Academy of Sciences[J]. Journal of Physics:Conference Series, 2017, 840: 012009. doi: 10.1088/1742-6596/840/1/012009
    [13] 黄双林, 龚雪飞, 徐鹏, 等. 空间引力波探测——天文学的一个新窗口[J]. 中国科学: 物理学 力学 天文学,2017,47(1):010404.

    HUANG SH L, GONG X F, XU P, et al. Gravitational wave detection in space—a new window in astronomy[J]. SCIENTIA SINICA Physica,Mechanica &Astronomica, 2017, 47(1): 010404. (in Chinese)
    [14] 胡文瑞. 空间引力波探测方案的探讨[J]. 科技导报,2018,36(12):1.

    HU W R. An investigation on the mission design of the space-borne gravitational wave detection[J]. Science &Technology Review, 2018, 36(12): 1. (in Chinese)
    [15] 刘志国, 朴云松, 乔从丰. 多波段引力波宇宙研究和空间太极计划[J]. 现代物理知识,2016,28(5):28-33.

    LIU Z G, PU Y S, QIAO C F. Multi-band gravitational wave cosmic research and the Taiji program of space[J]. Modern Physics Knowledge, 2016, 28(5): 28-33. (in Chinese)
    [16] 邓剑峰, 蔡志鸣, 陈琨, 等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学,2019,12(3):503-514. doi: 10.3788/co.20191203.0503

    DENG J F, CAI ZH M, CHEN K, et al. Drag-free control and its application in China's space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 503-514. (in Chinese) doi: 10.3788/co.20191203.0503
    [17] HYDE T T, MAGHAMI P. Precision pointing for the laser interferometry space antenna mission[J]. Advances in the Astronautical Sciences, 2003, 113: 497-508.
    [18] HECHENBLAIKNER G. Measurement of the absolute wavefront curvature radius in a heterodyne interferometer[J]. Journal of the Optical Society of America A, 2010, 27(9): 2078-2083. doi: 10.1364/JOSAA.27.002078
    [19] SHEARD B S, HEINZEL G, DANZMANN K, et al. Intersatellite laser ranging instrument for the GRACE Follow-on mission[J]. Journal of Geodesy, 2012, 86(12): 1083-1095. doi: 10.1007/s00190-012-0566-3
    [20] WANNER G, HEINZEL G, KOCHKINA E, et al. Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams[J]. Optics Communications, 2012, 285(24): 4831-4839. doi: 10.1016/j.optcom.2012.07.123
    [21] HEINZEL G, RüDIGER A, SCHILLING R, et al. Automatic beam alignment in the Garching 30-m prototype of a laser-interferometric gravitational wave detector[J]. Optics Communications, 1999, 160(4-6): 321-334. doi: 10.1016/S0030-4018(98)00654-3
    [22] 刘河山. 面向空间引力波探测的激光差分干涉相位计研究[D]. 北京: 中国科学院大学, 2015.

    LIU H SH. The research on phasemeter of heterodyne laser interferometry for the space gravitational wave detection[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
    [23] LI Y Q, WANG CH Y, WANG L Y, et al. A laser interferometer prototype with pico-meter measurement precision for Taiji space gravitational wave detection missionin China[J]. Microgravity Science and Technology, 2020, 32(3): 331-338. doi: 10.1007/s12217-019-09769-9
    [24] 李日忠, 黄俊斌, 秦石乔. 四象限光电探测器象限间一致性测量方法[J]. 传感技术学报,2006,19(6):2610-2612.

    LI R ZH, HUANG J B, QIN SH Q. Measuring the response coherence between the four quadrants of quadrant photo detector[J]. Chinese Journal of Sensors and Actuators, 2006, 19(6): 2610-2612. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  33
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-06-02

目录

    /

    返回文章
    返回