留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双波长窄带宽介质超材料吸收器

方晓敏 江孝伟 武华

方晓敏, 江孝伟, 武华. 双波长窄带宽介质超材料吸收器[J]. 中国光学. doi: 10.37188/CO.2021-0075
引用本文: 方晓敏, 江孝伟, 武华. 双波长窄带宽介质超材料吸收器[J]. 中国光学. doi: 10.37188/CO.2021-0075
FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics. doi: 10.37188/CO.2021-0075
Citation: FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics. doi: 10.37188/CO.2021-0075

双波长窄带宽介质超材料吸收器

doi: 10.37188/CO.2021-0075
基金项目: 国家自然科学基金(No. 61575008,No. 61650404);江西省自然科学基金(No. 20171BAB202037);江西省教育厅科技项目(No. GJJ170819);衢州市科技计划项目(No. 2019K20)
详细信息
    作者简介:

    方晓敏(1985—),男,浙江衢州人,硕士,副教授,2010年于中国计量大学获得硕士学位,主要从事超材料和光电子器件的研究。E-mail:zhjfangxiaomin@163.com

    江孝伟(1991—),男,浙江江山人,硕士,讲师,2016年于北京工业大学获得硕士学位,主要从事超材料和光电子器件的研究。Email:JosephJiangquzhi@126.com

    武 华(1980—),男,湖北仙桃人,博士,副教授,2006年,2015年于广东工业大学、北京工业大学分别获得硕士和博士学位,主要从事微纳材料和半导体光电子器件的研究。Email:wh1125@126.com

  • 中图分类号: TN256

Dual-wavelength narrow-bandwidth dielectric metamaterial absorber

Funds: Supported by the National Natural Science Foundation of China (Nos. 61575008, 61650404); the Jiangxi Natural Science Foundation (No. 20171BAB20203); the Technology Project of Jiangxi Provincial Education Department (No.GJJ170819); the Quzhou Science and Technology Project (No. 2019K20)
  • 摘要: 为降低窄带宽超材料吸收器(metamaterial absorber,MA)制造成本的同时拓宽其应用领域,本文基于时域有限差分法利用介质材料设计出双波长窄带宽介质MA,其由Au衬底、SiO2介质层和Si介质非对称光栅构成。经模拟计算发现,本文提出的双波长窄带宽介质MA在λ1=1.20852 μm和λ2=1.23821 μm具有超高吸收效率,而且FWHM也分别只有0.735 nm和0.077 nm。MA在λ1实现窄带宽吸收主要机理是因为光在SiO2层形成了法布里-珀罗(fabry-pérot, FP)腔共振,而MA在λ2实现窄带宽吸收主要是由于入射光在介质非对称光栅中形成了导模共振效应。经理论计算可知,通过改变MA的结构参数可对其吸收特性产生较为显著的影响。
  • 图  1  双波长窄带宽介质MA结构图

    Figure  1.  Dual-wavelength narrow bandwidth dielectric MA structure diagram

    图  2  双波长窄带宽介质MA吸收光谱

    Figure  2.  Dual wavelength narrow bandwidth dielectric MA absorption spectroscopy

    图  3  介质MA的有效阻抗。(a)阻抗实部;(b)阻抗虚部

    Figure  3.  The effective impedance of the dielectric MA. (a) The real part of the impedance; (b) the imaginary part of the impedance

    图  4  双波长窄带宽介质MA在不同波长处的电场分布。(a)λ1;(b)λ2.

    Figure  4.  The electric field distribution of the dual-wavelength narrow-bandwidth dielectric MA at different wavelengths. (a) λ1; (b) λ2.

    图  5  t对双波长窄带宽介质MA吸收特性的影响。(a)吸收光谱;(b)吸收波长

    Figure  5.  The influence of t on the absorption characteristics of the dual-wavelength narrow bandwidth dielectric MA. (a) absorption spectrum; (b) absorption wavelength

    图  6  t=1.205 μm时MA在波长λ2处的电场分布

    Figure  6.  Electric field distribution of the MA at wavelength λ2 when t = 1.205 μm

    图  7  W1对双波长窄带宽介质MA吸收特性的影响。(a)吸收光谱;(b)吸收波长

    Figure  7.  The influence of W1 on the absorption characteristics of the dual-wavelength narrow bandwidth dielectric MA. (a) absorption spectrum; (b) absorption wavelength

    图  8  W1对neq的影响

    Figure  8.  The effect of W1 on neq

    图  9  n对对双波长窄带宽介质MA吸收特性的影响。(a)吸收光谱;(b)吸收波长

    Figure  9.  The influence of n on the absorption characteristics of the dual-wavelength narrow bandwidth dielectric MA. (a) absorption spectrum; (b) absorption wavelength

    图  10  P对双波长窄带宽介质MA吸收特性的影响

    Figure  10.  The influence of P on the absorption characteristics of the dual-wavelength narrow bandwidth dielectric MA.

    图  11  P对Φ的影响

    Figure  11.  The effect of P on Φ

    ag币游app_币游娱乐官网(官网推荐)
  • [1] 张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学,2014,7(3):349-364.

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
    [2] DU K K, LI Q, LYU Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light,Science &Applications, 2017, 6(1): e16194.
    [3] HE X Y, LIU F, LIN F T, et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 2021, 46(3): 472-475. doi: 10.1364/OL.415187
    [4] HE X Y, LIU F, LIN F T, et al. Tunable terahertz Dirac semimetal metamaterials[J]. Journal of Physics D:Applied Physics, 2021, 54(3): 235103.
    [5] MOU N L, LIU X L, WEI T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374-5379. doi: 10.1039/C9NR07602F
    [6] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [7] TUAN T S, HOA N T Q. Numerical study of an efficient broadband metamaterial absorber in visible light region[J]. IEEE Photonics Journal, 2019, 11(3): 4600810.
    [8] PENG J, HE X Y, SHI CH Y Y, et al. Investigation of graphene supported terahertz elliptical metamaterials[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2020, 124: 114309. doi: 10.1016/j.physe.2020.114309
    [9] YAO G, LING F R, YUE J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 2016, 24(2): 1518-1527. doi: 10.1364/OE.24.001518
    [10] LIU N, MESCH M, WEISS T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348. doi: 10.1021/nl9041033
    [11] GREFFET J J, CARMINATI R, JOULAIN K, et al. Coherent emission of light by thermal sources[J]. Nature, 2002, 416(6876): 61-64. doi: 10.1038/416061a
    [12] ZHU ZH H, EVANS P G, HAGLUND R F JR, et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J]. Nano Letters, 2017, 17(8): 4881-4885. doi: 10.1021/acs.nanolett.7b01767
    [13] ANKER J N, HALL W P, LYANDRES O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453. doi: 10.1038/nmat2162
    [14] MENG L J, ZHAO D, RUAN ZH C, et al. Optimized grating as an ultra-narrow band absorber or plasmonic sensor[J]. Optics Letters, 2014, 39(5): 1137-1140. doi: 10.1364/OL.39.001137
    [15] FENG A S, YU Z J, SUN X K. Ultranarrow-band metagrating absorbers for sensing and modulation[J]. Optics Express, 2018, 26(22): 28197-28205. doi: 10.1364/OE.26.028197
    [16] KANG S, QIAN ZH Y, RAJARAM V, et al. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy[J]. Advanced Optical Materials, 2019, 7(2): 1801236. doi: 10.1002/adom.201801236
    [17] RRN ZH B, SUN Y H, LIN Z H, et al. Ultra-narrow band perfect metamaterial absorber based on dielectric-metal periodic configuration[J]. Optical Materials, 2019, 89: 308-315. doi: 10.1016/j.optmat.2019.01.020
    [18] LIAO Y L, ZHAO Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications[J]. Scientific Reports, 2020, 10(1): 1480. doi: 10.1038/s41598-020-58456-y
    [19] XU Z CH, GAO R M, DING CH F, et al. Multiband metamaterial absorber at terahertz frequencies[J]. Chinese Physics Letters, 2014, 31(5): 054205. doi: 10.1088/0256-307X/31/5/054205
    [20] HU F R, WANG L, QUAN B G, et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D:Applied Physics, 2013, 46(19): 195103. doi: 10.1088/0022-3727/46/19/195103
    [21] DING F, DAI J, CHEN Y T, et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 2016, 6(1): 39445. doi: 10.1038/srep39445
    [22] JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379. doi: 10.1103/PhysRevB.6.4370
    [23] LI W CH, ZHOU X, YING Y, et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array[J]. AIP Advances, 2015, 5(6): 067151. doi: 10.1063/1.4923194
    [24] 王琦. 导模共振亚波长器件的机理及特性研究[D]. 上海: 上海理工大学, 2012: 44-46.

    WANG Q. Study on the mechanism and characteristics of guided-mode resonance subwavelength device[J]. Shanghai: University of Shanghai for Science and Technology, 2012: 44-46. (in Chinese)
    [25] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器[J]. 物理学报,2012,61(20):200701. doi: 10.7498/aps.61.200701

    ZENG ZH W, LIU H T, ZHANG S W. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model[J]. Acta Physica Sinica, 2012, 61(20): 200701. (in Chinese) doi: 10.7498/aps.61.200701
    [26] 刘文兴. 可控线宽导模共振滤波器设计及其特性研究[D]. 南昌: 南昌大学, 2011: 18-22.

    LIU W X. Design and characterization of controllable linewidth guided-mode resonance filter[D]. Nanchang: Nanchang University, 2011: 18-22. (in Chinese)
    [27] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器[J]. 物理学报,2021,70(2):027804. doi: 10.7498/aps.70.20201173

    JIANG X W, WU H. Metamaterial absorber with controllable absorption wavelength and absorption efficiency[J]. Acta Physica Sinica, 2021, 70(2): 027804. (in Chinese) doi: 10.7498/aps.70.20201173
  • 加载中
图(11)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  38
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-08-11

目录

    /

    返回文章
    返回