留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属-电介质-金属柔性结构增强荧光发射

曹文静 孙李泽童 郭付周 宋健彤 刘啸 陈智辉 杨毅彪 孙非

曹文静, 孙李泽童, 郭付周, 宋健彤, 刘啸, 陈智辉, 杨毅彪, 孙非. 金属-电介质-金属柔性结构增强荧光发射[J]. 中国光学. doi: 10.37188/CO.2021-0084
引用本文: 曹文静, 孙李泽童, 郭付周, 宋健彤, 刘啸, 陈智辉, 杨毅彪, 孙非. 金属-电介质-金属柔性结构增强荧光发射[J]. 中国光学. doi: 10.37188/CO.2021-0084
CAO Wen-jing, SUN Li-ze-tong, GUO Fu-zhou, SONG Jian-tong, LIU Xiao, CHEN Zhi-hui, YANG Yi-biao, SUN Fei. Enhancing the fluorescence emission by flexible Metal-Dielectric-Metal structures[J]. Chinese Optics. doi: 10.37188/CO.2021-0084
Citation: CAO Wen-jing, SUN Li-ze-tong, GUO Fu-zhou, SONG Jian-tong, LIU Xiao, CHEN Zhi-hui, YANG Yi-biao, SUN Fei. Enhancing the fluorescence emission by flexible Metal-Dielectric-Metal structures[J]. Chinese Optics. doi: 10.37188/CO.2021-0084

金属-电介质-金属柔性结构增强荧光发射

doi: 10.37188/CO.2021-0084
基金项目: 国家自然科学基金资助项目(No. 11674239);山西省青年拔尖人才支持计划;三晋英才支持计划
详细信息
    作者简介:

    曹文静(1994—),女,山西临汾人,硕士研究生,2018年于太原师范学院获得学士学位,现就读于太原理工大学新型传感器与智能控制教育部/山西省重点实验室凝聚态物理学专业,主要从事微纳光子学方面的研究。 E-mail: cwjskr@126.com

    孙李泽童(1997—),男,山东德州人,硕士研究生,2019年于聊城大学获得学士学位,现就读于太原理工大学物理学专业,主要从事钙钛矿太阳能电池的研究。 E-mail: 392180516@qq.com

    郭付周(1994—),男,河南商丘人,硕士研究生,2018年于河南师范大学获得学士学位,现就读于太原理工大学新型传感器与智能控制教育部/山西省重点实验室光学工程专业,主要从事微纳光子学方面的研究。 E-mail: 2959542779@qq.com

    宋健彤(1997—),男,辽宁抚顺人,硕士研究生,2020年于大连交通大学获得学士学位,现就读于太原理工大学新型传感器与智能控制教育部/山西省重点实验室光学工程专业,主要从事微纳光子学方面的研究。 E-mail: 1299447072@qq.com

    刘 啸(1998—),男,山西晋中人,硕士研究生,2020年于华北科技学院获得学士学位,现就读于太原理工大学新型传感器与智能控制教育部/山西省重点实验室光学工程专业,主要从事微纳光子学方面的研究。 E-mail: liuxiao1215@link.tyut.edu.cn

    陈智辉(1984—),男,山西太原人,博士,教授,博士生导师,2006 年于北京邮电大学获得学士学位,2012 年于瑞典皇家工学院获得博士学位,现任职于太原理工大学新型传感器与智能控制教育部/山西省重点实验室,主要从事微纳光子学方面的研究。 E-mail: huixu@126.com

    杨毅彪(1967—),男,山西太原人,博士,教授,博士生导师,1987年于暨南大学获得学士学位,2009年于太原理工大学获得博士学位,现任职于太原理工大学新型传感器与智能控制教育部/山西省重点实验室,主要研究方向为微纳传感。 E-mail: yangyibiao_tyut@sohu.com

    孙 非(1985—),男,博士,研究员,硕士生导师, 2014年于瑞典皇家理工学院获得电气工程博士学位,2015年于浙江大学获得光学工程博士学位。现任职于太原理工大学物理与光电工程学院,主要从事变换光学、新型光学器件、电磁超材料和多物理器件方面的研究。 E-mail: sun333sun369@gmail.com

  • 中图分类号: TN815

Enhancing the fluorescence emission by flexible Metal-Dielectric-Metal structures

Funds: Supported by National Natural Science Foundation of China (No. 11674239); Program for the Top Young Talents of Shanxi Province; Program for the Sanjin Outstanding Talents of China
More Information
  • 摘要: 增强荧光发射的技术可以提高荧光检测灵敏度、提高LED的亮度,在提高发光器件性能方面具有重要的意义。由于金属结构在增强局域场、增强荧光发射方面具有很好的效果,而柔性电介质材料具有灵活的可弯曲性特性,所以针对荧光发射的增强,本文提出一种由金属-电介质-金属(MDM)组成的柔性结构。利用时域有限差分方法系统研究了该结构对量子点定向发射增强的影响。理论计算表明柔性MDM结构局部起伏和弧度对荧光增强起促进作用,且可以使位于结构中心位置量子点的量子效率增强约7倍。并且可以改变电介质的折射率和厚度实现目标波长的可调谐性,同时,实验验证表明该柔性MDM结构对荧光增强确有一定的促进作用,这一发现对未来的显示技术和柔性发光器件都有很大的价值,对高效的柔性器件的开发应用具有一定的指导意义。
  • 图  1  银和PVA组成的MDM结构模型示意图,其中橙色区域代表银膜,其厚度为d1;蓝色区域代表电介质PVA,其厚度为d2,上层银膜内半径为R,结构所对应圆心角为θ。

    Figure  1.  Schematic diagram of the MDM structure model composed with silver and PVA, the orange area represents the silver film with a thickness of d1; the blue area represents the dielectric PVA with a thickness of d2, the inner radius of the upper silver film is R, and the corresponding central angle of the structure is θ

    图  2  (a)不同偏振态下量子点的功率曲线;(b-d)不同偏振态的量子点在波长515 nm处的电场分布图

    Figure  2.  (a) Power curves of quantum dots for different polarization states; (b-d) Electric field distribution diagrams of quantum dot for different polarization states at a wavelength of 515 nm

    图  3  MDM不同弯曲弧度下量子点的功率曲线及珀塞尔因子

    Figure  3.  Power curve and Purcell factor of quantum dot for MDM with different bending radians

    图  4  MDM半径不同时,量子点的功率曲线及珀塞尔因子

    Figure  4.  Power curve and Purcell factor of quantum dot for MDM with different radius

    图  5  MDM电介质层厚度及折射率不同时量子点发光功率曲线

    Figure  5.  Quantum dot luminous power curve for MDM with different dielectric layer thickness and refractive index

    图  6  MDM不同上下层银膜厚度时量子点发光功率曲线和珀塞尔因子

    Figure  6.  Power curve and Purcell factor of Quantum dot for MDM with different thickness of the upper and lower silver films

    图  7  490 nm波长下,金属-电介质-金属结构、金属-电介质结构、金属结构中量子点发光的电场分布图、功率曲线和珀塞尔因子

    Figure  7.  The electric field distribution diagram at 490 nm wavelength, power curve and Purcell factor for quantum dot in metal-dielectric-metal structure, metal-dielectric structure, and metal structure

    图  8  位于MDM结构和柔性PVA基底中不同位置的(a)两相干光源(b)两非相干光源的远场荧光功率曲线,

    Figure  8.  Far-field fluorescence power curve of (a) two coherent dipole sources (b) two incoherent dipole sources located at different positions for the MDM structure and flexible PVA substrate

    图  9  MDM结构制备工艺流程图

    Figure  9.  MDM structure preparation process flow chart

    图  10  MDM结构(a)平面;(b)弯曲(俯视图)

    Figure  10.  MDM structure (a) plane; (b) curved

    图  11  光学显微镜下MDM结构的(a)明场图像;(b)375 nm激光照射下的暗场发光图像

    Figure  11.  (a) Bright field image of MDM structure under optical microscope; (b) Dark field luminescence image under 375 nm laser irradiation

    图  12  PL收集过程

    Figure  12.  PL collection process

    图  13  实验所得PL曲线

    Figure  13.  PL curve obtained from the experiment

    ag币游app_币游娱乐官网(官网推荐)
  • [1] WANG Z B, HELANDER M G, QIU J, et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nature Photonics, 2011, 5(12): 753-757. doi: 10.1038/nphoton.2011.259
    [2] KIM W, KWON S, LEE S M, et al. Soft fabric-based flexible organic light-emitting diodes[J]. Organic Electronics, 2013, 14(11): 3007-3013. doi: 10.1016/j.orgel.2013.09.001
    [3] HUANG W B, ZHANG X J, YANG T CH, et al. A mechanically bendable and conformally attachable polymer membrane microlaser array enabled by digital interference lithography[J]. Nanoscale, 2020, 12(12): 6736-6743. doi: 10.1039/C9NR10970F
    [4] CHOUDHURY S D, BADUGU R, RAY K, et al. Steering fluorescence emission with metal-dielectric-metal structures of Au, Ag, and Al[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15798-15807. doi: 10.1021/jp4051066
    [5] GRANADOS J A O, THANGARASU P, SINGH N, et al. Tetracycline and its quantum dots for recognition of Al3+ and application in milk developing cells bio-imaging[J]. Food Chemistry, 2019, 278: 523-532. doi: 10.1016/j.foodchem.2018.11.086
    [6] CHEN W L, LONG K D, YU H, et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy[J]. Analyst, 2014, 139(22): 5954-5963. doi: 10.1039/C4AN01508H
    [7] MCHUGH K J, JING L H, BEHRENS A M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents[J]. Advanced Materials, 2018, 30(18): 1706356. doi: 10.1002/adma.201706356
    [8] BHASIKUTTAN A C, MOHANTY J, NAU W M, et al. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly[J]. Angewandte Chemie International Edition, 2007, 46(22): 4120-4122. doi: 10.1002/anie.200604757
    [9] NANDIMATH M, BHAJANTRI R F, NAIK J. Spectroscopic and color chromaticity analysis of rhodamine 6G dye-doped PVA polymer composites for color tuning applications[J]. Polymer Bulletin, 2021, 78(8): 4569-4592. doi: 10.1007/s00289-020-03332-y
    [10] NGO Q M, HO Y L D, PUGH J R, et al. Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays[J]. Current Applied Physics, 2018, 18(7): 793-798. doi: 10.1016/j.cap.2018.04.007
    [11] LI D Y, ZHOU D L, XU W, et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors[J]. Advanced Functional Materials, 2018, 28(41): 1804429. doi: 10.1002/adfm.201804429
    [12] YAN Y ZH, ZENG Y, WU Y, et al. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19): 23552-23564. doi: 10.1364/OE.22.023552
    [13] JIANG J J, XIE Y B, LIU ZH Y, et al. Amplified spontaneous emission via the coupling between Fabry-Perot cavity and surface plasmon polariton modes[J]. Optics Letters, 2014, 39(8): 2378-2381. doi: 10.1364/OL.39.002378
    [14] REN Y, LU Y H, ZANG T Y, et al. Fluorescence emission mediated by metal-dielectric-metal fishnet metasurface: spatially selective excitation and double enhancement[J]. Chinese Journal of Chemical Physics, 2019, 32(3): 349-356. doi: 10.1063/1674-0068/cjcp1807182
    [15] CHOUDHURY S D, BADUGU R, NOWACZYK K, et al. Tuning fluorescence direction with plasmonic metal–dielectric–metal substrates[J]. The Journal of Physical Chemistry Letters, 2013, 4(1): 227-232. doi: 10.1021/jz301867b
    [16] JUNG B Y, KIM N Y, LEE C H, et al. Optical properties of Fabry-Perot microcavity with organic light emitting materials[J]. Current Applied Physics, 2001, 1(2-3): 175-181. doi: 10.1016/S1567-1739(01)00006-2
    [17] UDDIN S Z, TANVIR M R, TALUKDER M A. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection[J]. Journal of Applied Physics, 2016, 119(20): 204701. doi: 10.1063/1.4952576
    [18] CHOUDHURY S D, BADUGU R, RAY K, et al. Directional emission from metal-dielectric-metal structures: effect of mixed metal layers, dye location, and dielectric thickness[J]. The Journal of Physical Chemistry C, 2015, 119(6): 3302-3311. doi: 10.1021/jp512174w
    [19] PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1985..
    [20] LU G W, ZHANG T Y, LI W Q, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15822-15828. doi: 10.1021/jp203317d
    [21] CHOU R Y, LU G W, SHEN H M, et al. A hybrid nanoantenna for highly enhanced directional spontaneous emission[J]. Journal of Applied Physics, 2014, 115(24): 244310. doi: 10.1063/1.4885422
    [22] GRYCZYNSKI I, MALICKA J, NOWACZYK K, et al. Effects of sample thickness on the optical properties of surface plasmon-coupled emission[J]. The Journal of Physical Chemistry B, 2004, 108(32): 12073-12083. doi: 10.1021/jp0312619
  • 加载中
图(13)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-08-11

目录

    /

    返回文章
    返回