留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微细铣刀位姿同轴全息重建方法

孙艺洋 许金凯 于占江 张向辉 程亚亚 于化东

孙艺洋, 许金凯, 于占江, 张向辉, 程亚亚, 于化东. 微细铣刀位姿同轴全息重建方法[J]. 中国光学. doi: 10.37188/CO.2021-0089
引用本文: 孙艺洋, 许金凯, 于占江, 张向辉, 程亚亚, 于化东. 微细铣刀位姿同轴全息重建方法[J]. 中国光学. doi: 10.37188/CO.2021-0089
SUN Yi-yang, XU Jin-kai, YU Zhan-jiang, ZHANG Xiang-hui, CHENG YA-ya, YU Hua-dong. Coaxial holographic reconstruction method of micro-milling tool pose[J]. Chinese Optics. doi: 10.37188/CO.2021-0089
Citation: SUN Yi-yang, XU Jin-kai, YU Zhan-jiang, ZHANG Xiang-hui, CHENG YA-ya, YU Hua-dong. Coaxial holographic reconstruction method of micro-milling tool pose[J]. Chinese Optics. doi: 10.37188/CO.2021-0089

微细铣刀位姿同轴全息重建方法

doi: 10.37188/CO.2021-0089
基金项目: 国家重点研发计划(No. 2018YFB1107403);中国“111”计划(No. D17017);吉林省科技发展计划(No. 20190101005JH,No. 20180201057GX)
详细信息
    作者简介:

    孙艺洋(1997—),男,吉林辽源人,硕士研究生,2019年于长春理工大学获得学士学位,主要从事微纳制造技术方面的研究. E-mail:S18844185262@163.com

    许金凯(1978—),男,吉林吉林人,博士,博士生导师,研究员,2002年于东北林业大学获得学士学位,2005年于长春理工大学获得硕士学位,2011年于中国科学院长春光机精密机械与物理研究所获得博士学位。主要从事跨尺度微纳机械制造技术、跨尺度微纳特种加工技术、功能表面微纳制造技术等研究。E-mail:xujinkai@cust.edu.cn

  • 中图分类号: O438.1

Coaxial holographic reconstruction method of micro-milling tool pose

Funds: Supported by the National Key Research and Development Plan Project (No. 2018YFB1107403); The “111” Project of China (No. D17017); Jilin Province Scientific and Technological Development Program (No. 20190101005JH and No. 20180201057GX)
More Information
  • 摘要: 微细铣刀在主轴上存在装夹偏角时,会加剧刀刃磨损,降低刀具使用寿命。为了精确观测微细铣刀在机倾斜状态,提出了基于景深的微细铣刀三维位姿重建方法。利用激光同轴数字全息实验装置得到微细铣刀全息图,并通过菲涅尔再现算法获得再现像。在再现像中提取刀具边缘点作为关键点,采用小波变换局部方差算子求出关键点的聚焦程度,确定铣刀对应的轴向位置。利用最小二乘法对关键点拟合修正重建误差,实现微细铣刀的三维位姿重建。实验结果表明,基于景深的微细铣刀三维位姿重建方法获得的微细铣刀重建误差优于0.1°。该方法能够精确测量微细铣刀三维位姿,可为后续的微细铣刀装夹精度修正提供参考依据。
  • 图  1  数字全息记录过程示意图

    Figure  1.  Schematic diagram of the recording process of the digital holography

    图  2  数字全息再现过程示意图

    Figure  2.  Schematic diagram of the reconstruction process of the digital holography

    图  3  刀具三维位姿重构步骤流程图。(a)刀具全息图;(b) n张再现像;(c)滤波后的n张再现像;(d)点(i,j)的最佳再现距离;(e)刀具三维位姿示意图

    Figure  3.  Flow diagram of three-dimensional pose reconstruction steps of the tool. (a) Tool hologram; (b) n reconstruction images; (c) n reconstruction images after filtering; (d) best reconstruction distance for (i,j); (e) schematic diagram of the tool’s three-dimensional pose

    图  4  数字全息实验装置示意图

    Figure  4.  Schematic diagram of the digital holography experimental device

    图  5  铅芯数字全息实验装置示意图(a)摆正状态(b)倾斜指定角度

    Figure  5.  Schematic diagram of the lead-core digital holographic experimental device. (a) Straightened; (b) incline at a specified angle

    图  6  铅芯数字全息图及再现像(a)数字全息图(b)再现像(左)及计算区域放大图(右)

    Figure  6.  Lead-core digital hologram and reconstruction image. (a) Digital hologram; (b) reconstruction image (left) and calculation area magnification (right)

    图  7  (a)小波变换局部方差算子对应的的整体轴向位置分布 (b)局部灰度方差算子对应的整体轴向位置分布

    Figure  7.  (a) Overall axial position distribution corresponding to the local variance operator of wavelet transform; (b) overall axial position distribution corresponding to the local gray-scale variance operator

    图  8  (a)小波变换局部方差算子对应的低频点的聚焦评价曲线; (b)小波变换局部方差算子对应的边缘点的聚焦评价曲线; (c)局部灰度方差算子对应的低频点聚焦评价曲线; (d)局部灰度方差算子对应的边缘点聚焦评价曲线

    Figure  8.  (a) Focus evaluation curve of low frequency points corresponding to the local variance operator of the wavelet transform; (b) focus evaluation curve of the edge points corresponding to the local variance operator of the wavelet transform; (c) focus evaluation curve of the low frequency points corresponding to the local gray-scale variance operator; (d) focus evaluation curve of the edge points corresponding to the local gray-scale variance operator

    图  9  铅芯的三维重建结果(a)小波变换局部方差算子的三维重建结果;(b)局部灰度方差算子的三维重建结果

    Figure  9.  Three-dimensional reconstruction results of lead core (a) Three-dimensional reconstruction result of the local variance operator of the wavelet transform; (b) three-dimensional reconstruction result of the local gray-scale variance operator

    图  10  像素坐标下铅芯三维重建结果(a)小波变换局部方差算子的三维重建结果;(b)局部灰度方差算子的三维重建结果

    Figure  10.  Three-dimensional reconstruction result of the lead core in pixel coordinates. (a) Three-dimensional reconstruction result of the local variance operator of wavelet transform; (b) three-dimensional reconstruction result of the local gray-level variance operator

    图  11  距离坐标下铅芯三维重建结果(a)小波变换局部方差算子的三维重建结果;(b)局部灰度方差算子的三维重建结果

    Figure  11.  Three-dimensional reconstruction result of the lead core in the distance coordinates. (a) Three-dimensional reconstruction result of the local variance operator of the wavelet transform; (b) three-dimensional reconstruction results of the local gray-level variance operator

    图  12  (a)待测铣刀(b)数字全息图(c)再现像

    Figure  12.  (a) Tested tool; (b) digital hologram; (c) reconstruction image

    图  13  (a)铣刀再现像低频点的聚焦评价曲线;(b)铣刀再现像边缘点的聚焦评价曲线

    Figure  13.  (a) Focus evaluation curve of the low-frequency point of the milling tool reconstruction image; (b) focus evaluation curve of the edge point of the milling tool’s reconstruction image

    图  14  铣刀三维位姿重构结果

    Figure  14.  Three-dimensional reconstruction results of the milling tool

    ag币游app_币游娱乐官网(官网推荐)
  • [1] SHI G F, ZHANG Y SH, ZHANG H, et al. Analysis of the influence of installation tilt error on the tool setting accuracy by laser diffraction[J]. Applied Optics, 2018, 57(12): 3012-3020. doi: 10.1364/AO.57.003012
    [2] ZHENG K B, HE N, LI L, et al. Method of precise tool setting for micro turning[J]. Materials Science Forum, 2012, 723: 383-388. doi: 10.4028/www.scientific.net/MSF.723.383
    [3] XU M, NAKAMOTO K, TAKEUCHI Y. Compensation method for tool setting errors based on non-contact on-machine measurement[J]. International Journal of Automation Technology, 2020, 14(1): 66-72. doi: 10.20965/ijat.2020.p0066
    [4] 曾超, 高洪跃, 刘吉成, 等. 动态全息三维显示研究最新进展[J]. 物理学报,2015,64(12):124215. doi: 10.7498/aps.64.124215

    ZENG CH, GAO H Y, LIU J CH, et al. Latest developments of dynamic holographic three-dimensional display[J]. Acta Physica Sinica, 2015, 64(12): 124215. (in Chinese) doi: 10.7498/aps.64.124215
    [5] 陈竹, 姜宏振, 刘旭, 等. 数字全息术用于光学元件表面缺陷形貌测量[J]. 光学 精密工程,2017,25(3):576-583. doi: 10.3788/OPE.20172503.0576

    CHEN ZH, JIANG H ZH, LIU X, et al. Measurement of surface defects of optical elements using digital holography[J]. Optics and Precision Engineering, 2017, 25(3): 576-583. (in Chinese) doi: 10.3788/OPE.20172503.0576
    [6] KOZACKI T, CHLIPALA M, MAKOWSKI P L. Color Fourier orthoscopic holography with laser capture and an LED display[J]. Optics Express, 2018, 26(9): 12144-12158. doi: 10.1364/OE.26.012144
    [7] 朱越, 刘文耀, 刘方超, 等. 用数字全息术检测轮胎气泡缺陷[J]. 光学 精密工程,2009,17(5):1099-1104.

    ZHU Y, LIU W Y, LIU F CH, et al. Inspection of air bubble defect in tires by digital holography[J]. Optics and Precision Engineering, 2009, 17(5): 1099-1104. (in Chinese)
    [8] 王雪, 刘虹遥, 路鑫超, 等. 无透镜全息显微细胞成像[J]. 光学 精密工程,2020,28(8):1644-1650.

    WANG X, LIU H Y, LU X CH, et al. Cell imaging by holographic lens-free microscopy[J]. Optics and Precision Engineering, 2020, 28(8): 1644-1650. (in Chinese)
    [9] 郭力菡, 王新柯, 张岩. 生物组织的太赫兹数字全息成像[J]. 光学 精密工程,2017,25(3):611-615. doi: 10.3788/OPE.20172503.0611

    GUO L H, WANG X K, ZHANG Y. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611-615. (in Chinese) doi: 10.3788/OPE.20172503.0611
    [10] DI CAPRIO G, FERRARA M A, MICCIO L, et al. Holographic imaging of unlabelled sperm cells for semen analysis: a review[J]. Journal of Biophotonics, 2015, 8(10): 779-789. doi: 10.1002/jbio.201400093
    [11] 杨德兴, 许增奇, 姜宏振, 等. 利用数字全息干涉术测量电路板的连续弯曲形变[J]. 光学 精密工程,2012,20(8):1789-1795. doi: 10.3788/OPE.20122008.1789

    YANG D X, XU Z Q, JIANG H ZH, et al. Measurement of continuous bending deformation for circuit boards by digital holographic interferometry[J]. Optics and Precision Engineering, 2012, 20(8): 1789-1795. (in Chinese) doi: 10.3788/OPE.20122008.1789
    [12] LI X Y, TANG CH, ZHU X J, et al. Image/video encryption using single shot digital holography[J]. Optics Communications, 2015, 342: 218-223. doi: 10.1016/j.optcom.2014.12.082
    [13] SU Y G, XU W J, LI T L, et al. Optical color image encryption based on fingerprint key and phase-shifting digital holography[J]. Optics and Lasers in Engineering, 2021, 140: 106550. doi: 10.1016/j.optlaseng.2021.106550
    [14] 马利红, 王辉, 李勇, 等. 全息模拟再现像的三维重构[J]. 光子学报,2006,35(4):595-598.

    MA L H, WANG H, LI Y, et al. 3-D rebuilding based on numerical reconstruction of the hologram[J]. Acta Photonica Sinica, 2006, 35(4): 595-598. (in Chinese)
    [15] 阳静, 吴学成, 吴迎春, 等. 数字显微全息重建图像的景深扩展研究[J]. 物理学报,2015,64(11):114209. doi: 10.7498/aps.64.114209

    YANG J, WU X CH, WU Y CH, et al. Study on extending the depth of field in reconstructed image for a micro digital hologram[J]. Acta Physica Sinica, 2015, 64(11): 114209. (in Chinese) doi: 10.7498/aps.64.114209
    [16] 程亚亚, 于化东, 于占江, 等. 微铣刀同轴全息图像增强方法[J]. 中国光学,2020,13(4):705-712. doi: 10.37188/CO.2019-0217

    CHENG Y Y, YU H D, YU ZH J, et al. Method of enhancing the quality of in-line holographic images for micro-milling tool[J]. Chinese Optics, 2020, 13(4): 705-712. (in Chinese) doi: 10.37188/CO.2019-0217
  • 加载中
图(14)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  50
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-08-16

目录

    /

    返回文章
    返回