留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆形平面镜的高精度面形重构技术

闫公敬 罗旺 张斌智

闫公敬, 罗旺, 张斌智. 椭圆形平面镜的高精度面形重构技术[J]. 中国光学. doi: 10.37188/CO.2021-0106
引用本文: 闫公敬, 罗旺, 张斌智. 椭圆形平面镜的高精度面形重构技术[J]. 中国光学. doi: 10.37188/CO.2021-0106
YAN Gong-jing, LUO Wang, ZHANG Bin-zhi. High-precision surface reconstruction technology for elliptical flat mirrors[J]. Chinese Optics. doi: 10.37188/CO.2021-0106
Citation: YAN Gong-jing, LUO Wang, ZHANG Bin-zhi. High-precision surface reconstruction technology for elliptical flat mirrors[J]. Chinese Optics. doi: 10.37188/CO.2021-0106

椭圆形平面镜的高精度面形重构技术

doi: 10.37188/CO.2021-0106
基金项目: 国家自然科学基金面上项目(No.61975201);广东省基础与应用基础研究基金(2020A1515110259)
详细信息
    作者简介:

    闫公敬(1964—),男,山东荣成人,学士,副教授,1991年于东北师范大学获得学士学位,主要从事光学检测方面的研究。E-mail:yan_gong_jing@163.com

    罗 旺(1973—),男,黑龙江庆安人,硕士,副教授,2010年于哈尔滨师范大学获得硕士学位,主要从事光学检测方面的研究。E-mail:lw899397@163.com

    张斌智(1979—),男,山西临猗人,博士,副研究员,2012年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学加工和检测方面的研究。E-mail:binzh123@163.com

  • 中图分类号: TP74

High-precision surface reconstruction technology for elliptical flat mirrors

Funds: Supported by National Natural Science Foundation of China (No. 61975201); Guangdong Basic and Applied Basic Research Foundation(2020A1515110259)
More Information
  • 摘要: 为了实现大口径椭圆形光学平面镜的高精度面形测量,提升大口径望远镜系统的像质,本文对椭圆形平面反射镜面形的绝对检测算法进行了研究。首先,对椭圆形镜面进行了多项式正交化拟合研究。接着,对绝对检测算法进行了理论研究,利用正交化绝对检测算法可以有效的分离参考镜与待测镜的面形误差,从而实现待测椭圆形平面镜面的高精度面形重构。为了证明上述方法的实际检测精度,我们对250 mm*300 mm的椭圆形镜面进行了绝对检测模拟与检测实验。模拟中我们对参考镜面形精度不高的情况进行了仿真计算,实验中利用光阑在Zygo300 mm口径标准平面镜头中选取250 mm*300 mm椭圆形检测区域,采用150 mm口径Zygo干涉仪对上述椭圆形区域完成绝对检测,并基于上述正交化绝对检测算法对椭圆形平面镜实现了面形重构。实验结果表明,利用本文所述方法可以实现参考镜与椭圆形待测镜面的面形误差分离,绝对检测结果的残差图RMS(Root-mean square)值为0.29 nm,证明了本文所述方法的可行性与精度。利用上述方法可以实现椭圆形平面反射镜的高精度面形重构。
  • 图  1  检测子孔径规划图

    Figure  1.  Arrangement of subapertures

    图  2  参考镜面形误差

    Figure  2.  Reference surface error

    图  3  待测镜面形误差

    Figure  3.  Test surface error

    图  4  参考镜面形重构结果

    Figure  4.  Reference surface reconstruction map

    图  5  待测镜面形重构结果

    Figure  5.  Test surface reconstruction map

    图  6  参考镜拟合残差

    Figure  6.  Reference surface residual map

    图  7  待测镜拟合残差

    Figure  7.  Test surface residual map

    图  8  实验装置图

    Figure  8.  Experimental setup

    图  9  子孔径测试结果

    Figure  9.  Measured subapertures

    图  10  测试镜面形重构结果

    Figure  10.  Reconstructed full aperture map of the elliptic surface

    图  11  参考镜面形重构结果

    Figure  11.  Reconstructed reference surface map

    图  12  子孔径检测结果与绝对检测结果残差图

    Figure  12.  Difference maps between each subaperture map and its corresponding stitching map

    图  13  子孔径重叠区域偏差结果

    Figure  13.  Subaperture variations

    图  14  传统算法测试镜面形重构结果

    Figure  14.  Reconstructed testing elliptic surface map with the standard Zernike polynomials fitting method

    图  15  传统算法参考镜面形重构结果

    Figure  15.  Reconstructed reference surface map with the standard Zernike polynomials fitting method

    图  16  子孔径检测结果与传统绝对检测结果残差图

    Figure  16.  Difference maps between each subaperture map and its corresponding stitching map using the traditional method

    图  17  传统算法子孔径重叠区域偏差结果

    Figure  17.  Subaperture variations with the traditional method

    ag币游app_币游娱乐官网(官网推荐)
  • [1] LI T, LIU Y, SUN Y Y, et al. Vectorial pupil optimization to compensate polarization distortion in immersion lithography system[J]. Optics Express, 2020, 28(4): 4412-4425. doi: 10.1364/OE.382051
    [2] VETTER A, KIRNER R, OPALEVS D, et al. Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source[J]. Optics Express, 2018, 26(17): 22218-22233. doi: 10.1364/OE.26.022218
    [3] LI T, LIU Y, SUN Y Y, et al. Multiple-field-point pupil wavefront optimization in computational lithography[J]. Applied Optics, 2019, 58(30): 8331-8338. doi: 10.1364/AO.58.008331
    [4] SKIDMORE W. Thirty meter telescope detailed science case: 2015[J]. Research in Astronomy and Astrophysics, 2015, 15(12): 1945-2140. doi: 10.1088/1674-4527/15/12/001
    [5] MA D L. Recommended conceptual optical system design for China’s Large Optical-infrared Telescope (LOT)[J]. Optics Express, 2018, 26(1): 108-119. doi: 10.1364/OE.26.000108
    [6] LI H Y, WALKER D, YU G Y, et al. Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope[J]. Applied Optics, 2013, 52(23): 5781-5787. doi: 10.1364/AO.52.005781
    [7] JI H R, ZHU ZH B, TAN H, et al. Design of a high-throughput telescope based on scanning an off-axis three-mirror anastigmat system[J]. Applied Optics, 2021, 60(10): 2817-2823. doi: 10.1364/AO.421998
    [8] KULAWIEC A, MURPHY P, DEMARCO M. Measurement of high-departure aspheres using subaperture stitching with the Variable Optical Null (VON)[J]. Proceedings of SPIE, 2010, 7655: 765512. doi: 10.1117/12.864962
    [9] SUPRANOWITZ C, MCFEE C, MURPHY P, et al. Asphere metrology using variable optical null technology[J]. Proceedings of SPIE, 2012, 8416: 841604. doi: 10.1117/12.2009289
    [10] 朱鹏辉, 唐锋, 卢云君, 等. 高精度平面子孔径拼接算法研究[J]. 中国激光,2016,43(11):1104002. doi: 10.3788/CJL201643.1104002

    ZHU P H, TANG F, LU Y J, et al. Research on high accuracy sub-aperture stitching algorithm for flat optics[J]. Chinese Journal of Lasers, 2016, 43(11): 1104002. (in Chinese) doi: 10.3788/CJL201643.1104002
    [11] 王孝坤. 大口径离轴凸非球面系统拼接检验技术[J]. 中国光学,2016,9(1):130-136. doi: 10.3788/co.20160901.0130

    WANG X K. Measurement of large off-axis convex asphere by systemic stitching testing method[J]. Chinese Optics, 2016, 9(1): 130-136. (in Chinese) doi: 10.3788/co.20160901.0130
    [12] 张海东, 王孝坤, 薛栋林, 等. 一种针对超大口径凸非球面的面形检测方法[J]. 中国光学,2019,12(5):1147-1154. doi: 10.3788/co.20191205.1147

    ZHANG H D, WANG X K, XUE D L, et al. Surface testing method for ultra-large convex aspheric surfaces[J]. Chinese Optics, 2019, 12(5): 1147-1154. (in Chinese) doi: 10.3788/co.20191205.1147
    [13] 郑彬, 陈永和, 傅雨田. 拼接式反射镜共焦误差检测[J]. 光学 精密工程,2019,27(1):26-33. doi: 10.3788/OPE.20192701.0026

    ZHENG B, CHEN Y H, FU Y T. Co-focus error detection of segmented mirrors[J]. Optics and Precision Engineering, 2019, 27(1): 26-33. (in Chinese) doi: 10.3788/OPE.20192701.0026
    [14] 李斌, 刘燕德, 谢锋云. 拼接镜新型粗共相检测方法[J]. 光学 精密工程,2018,26(11):2647-2653. doi: 10.3788/OPE.20182611.2647

    LI B, LIU Y D, XIE F Y. Coarse co-phasing detection of segmented mirrors[J]. Optics and Precision Engineering, 2018, 26(11): 2647-2653. (in Chinese) doi: 10.3788/OPE.20182611.2647
    [15] 逯诗桐, 张天一, 张晓辉. 大口径空间巡天望远镜子孔径拼接平场定标法[J]. 中国光学,2020,13(5):1094-1102. doi: 10.37188/CO.2019-0252

    LU SH T, ZHANG T Y, ZHANG X H. Flat-field calibration method for large diameter survey mirror aperture splicing[J]. Chinese Optics, 2020, 13(5): 1094-1102. (in Chinese) doi: 10.37188/CO.2019-0252
    [16] SU P, BURGE J H, PARKS R E. Application of maximum likelihood reconstruction of subaperture data for measurement of large flat mirrors[J]. Applied Optics, 2010, 49(1): 21-31. doi: 10.1364/AO.49.000021
    [17] SU D Q, MIAO E L, SUI Y X, et al. Absolute surface figure testing by shift-rotation method using Zernike polynomials[J]. Optics Letters, 2012, 37(15): 3198-3200. doi: 10.1364/OL.37.003198
    [18] YANG ZH M, DU J Y, TIAN CH, et al. Generalized shift-rotation absolute measurement method for high-numerical-aperture spherical surfaces with global optimized wavefront reconstruction algorithm[J]. Optics Express, 2017, 25(21): 26133-26147. doi: 10.1364/OE.25.026133
    [19] YANG ZH M, GAO ZH SH, ZHU D, et al. Absolute ultra-precision measurement of high-numerical-aperture spherical surface by high-order shift-rotation method using Zernike polynomials[J]. Optics Communications, 2015, 355: 191-199. doi: 10.1016/j.optcom.2015.06.033
    [20] MAHAJAN V N, DAI G M. Orthonormal polynomials in wavefront analysis: analytical solution[J]. Journal of the Optical Society of America A, 2007, 24(9): 2994-3016. doi: 10.1364/JOSAA.24.002994
    [21] DAI G M, MAHAJAN V N. Nonrecursive determination of orthonormal polynomials with matrix formulation[J]. Optics Letters, 2007, 32(1): 74-76. doi: 10.1364/OL.32.000074
  • 加载中
图(17)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  33
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-08-16

目录

    /

    返回文章
    返回